Assessment of Hydroabrasive Wear Resistance of Construction Materials with Functional Coatings, which are Formed by Resource-Saving and Environmentally Friendly Technologies

2020 ◽  
Vol 864 ◽  
pp. 265-277
Author(s):  
Viacheslav Tarelnyk ◽  
Ievgen Konoplianchenko ◽  
Oksana Gaponova ◽  
Bogdan Sarzhanov

The work presented in this paper is devoted to the formation of thick-layer wear-resistant coatings by technologies based on electrospark alloying, an example of essential components hardening for the heavy-duty processing equipment operating under hydroabrasive wear conditions. The aim of the paper is to improve the manufacturing and repairing technologies for the helical surfaces of the screws made of 65Г, 30X13 and 40X steels and corrosion-resistant stainless steel 12X18H10T. The above aim has been achieved owing to applying the new environmentally friendly technologies for the formation of the surface layers, and also due to the choice of the surface layers that are most resistant against hydroabrasive wear, which choice being provided for by conducting the comparative tests on the samples made of the above said steel grades and strengthened in various ways. The analysis results of the hydroabrasive wear resistance of the samples made of steel and provided with protective coatings is presented.

Author(s):  
Середа Д.Б.

The structure and phase composition of chromium-alloy coatings consisting of the following phases are investigated in the work: when boron doping the coating on brass C68700 consists of phases: Cu3Al, CuB, CuZn2 and zones of solid solution Cr, Al, B in copper; during titanium doping Cu3Al and CuAl phases in the transition zone: phases CuTi and CuTi2 When tested on A572 steels, in conditions of sliding friction, the best wear resistance among the considered protective coatings are doped with titanium and boron. Their wear resistance is 1,8 – 2,1 times higher than that of coatings obtained under isothermal conditions. Under non-stationary temperature conditions, the microhardness reaches the following values: when doped with boron H100 = 16500 – 17500 MPa, when doped with silicon H100 = 13500 – 14500 MPa, when doped with titanium H100 = 15000 – 16000 MPa. The obtained results correlate with the indicators of wear resistance. A comparative analysis of the corrosion resistance of protective coatings obtained under non-stationary temperature conditions and isothermal conditions shows that they have a weight loss of 1.7–2.1 times less. It was found that when tested in a 30% aqueous solution of sulfuric acid, all protective coatings have good stability. Thus, when doped with boron, the weight loss is 15,2 g/m2, при when doped with silicon - 10,8 g/m2,  and when doped with titanium - – 9,9 g/m2.


2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Artem Vyacheslavovich Ryzhenkov ◽  
Gennady Viktorovich Kachalin ◽  
Alexey Feliksovich Mednikov ◽  
Aleksander Borisovich Tkhabisimov

2020 ◽  
Vol 4 (141) ◽  
pp. 123-131
Author(s):  
IL’YA ROMANOV ◽  

The development of energy and resource-saving methods and technologies for strengthening and restoring the working bodies of agricultural machinery will increase their abrasive wear resistance and durability by using materials from machine-building waste and reduce the cost by 10-30 percent without reducing operational characteristics. (Research purpose) The research purpose is in increasing the abrasive wear resistance and durability of cultivator legs by surfacing powder materials obtained by electroerosive dispersion from solid alloy waste by high-frequency currents. (Materials and methods) Authors obtained a powder for research on their own experimental installations of the CCP "Nano-Center" of electroerosive dispersion from waste of sintered hard alloys of the T15K6 brand. The microhardness of powders and coatings on microshifts was measured using the PMT-3 device, and the hardness of coatings with the KMT-1 microhardometer was measured using the Rockwell method according to GOST 9013-59. The microwave-40AV installation was used to assess the wear resistance of materials of working bodies of tillage machines. (Results and discussion) In the course of laboratory wear tests the relative wear resistance of samples hardened by high-frequency surfacing currents significantly exceeds the wear resistance of non-hardened samples made OF 65g steel, accepted as the reference standard. (Conclusions) Based on the results of experimental studies, the article proposes a new resource-saving technological process for strengthening the working bodies of agricultural machinery through the use of materials from machine-building waste, which allows increasing the abrasive wear resistance of working bodies by 1.5-2 times due to the use of tungsten-containing materials.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 379
Author(s):  
Domagoj Mudronja ◽  
Frederik Vanmeert ◽  
Stjepko Fazinic ◽  
Koen Janssens ◽  
Darko Tibljas ◽  
...  

Stone monuments and buildings are susceptible to weathering. Carbonate-based stones are especially vulnerable in acidic environments, whereas magmatic acidic stones are more susceptible to chemical weathering in basic environments. To slow down surface corrosion of limestone and marble artworks/buildings, protective coatings which inhibit calcite dissolution have been proposed. In this work, samples from two stone types with different porosity were treated with ammonium oxalate (AmOx) to create a protective layer of calcium oxalate (CaOx) using the previously developed brushing method. Two different synchrotron microscopy experiments were performed to determine its protective capability. X-ray powder diffraction (SR-μ-XRPD) in transmission geometry allowed visualization of the distributions of calcium carbonate and oxalates along the sample depths. In a second step, X-ray fluorescence (SR-μ-XRF) was used to check the efficiency/integrity of the protective surface coating layer. This was done by measuring the sulfur distribution on the stone surface after exposing the protected stones to sulfuric acid. XRPD showed the formation of a protective oxalate layer with a thickness of 5–15 µm on the less porous stone, while a 20–30 µm thick layer formed on the more porous stone. The XRF study showed that the optimal treatment time depends on the stone porosity. Increasing the treatment time from 1 to 3 h resulted in a decreased efficiency of the protective layer for the low porosity stone. We assume that this is due to the formation of vertical channels (cracks) in the protective layer.


Author(s):  
Iryna Hobyr ◽  
Lidiia Hobyr

In a market economy, it becomes important to improve the organization of enterprise management and, above all, the production process, efficient use of financial, material resources and inventories. Effective management of material resources increases profits and provides the necessary investment. To maintain high profitability and liquidity, the management of current activities of enterprises, in particular inventory management plays a significant role. The categorical apparatus of material resources management at the enterprise is considered, the definition of “material resources” is generalized, the definition of "material resources management" is offered, and also the system of material resources management at the enterprise is considered. In the management of material resources at the enterprise there are 2 approaches – logistics and reengineering. The main tasks of the mechanism of management of material resources of the enterprise of building materials are defined. These are: increasing the efficiency of material resources and choosing cheap sources of funding; introduction of new production, resource-saving technologies; minimization of costs for procurement, production and marketing activities; increasing the interest of employees of all services in the effective performance of their duties; product quality management. The analysis of efficiency of use of material resources at the enterprises of building materials which has shown, that manufacture of production is rather material-intensive is carried out. This is evidenced by the share of material costs in the cost of work, and the value of the utilization factor of materials indicates the economical use of material resources in production. Reserves for improving the efficiency of material resources at construction materials enterprises have been identified. The ways of the most rational use of material resources of construction materials enterprises are offered, in particular it is improvement of a design and technology of manufacturing of products, introduction of more progressive norms of expenses of resources, use of substitute materials, and reduction of losses at stages of transportation, storage and industrial use.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mengwei Xie

More and more designers and companies in the packaging industry begin to pay attention to research on environmentally friendly packaging design. From studying the additional functions of packaging to starting to study the environmentally friendly materials of packaging, as well as the “zero-pollution” packaging advocated today, the traditional form and mode of packaging has changed. This article aims to study the design of the overall packaging box of environmentally friendly packaging materials and discuss its performance. In this paper, the platform construction method and the modulus definition classification method are used to calculate the positive axis stiffness of the single-layer board. The effect of coating process on the wear resistance of paper-based materials was studied, the wear resistance of box board base paper and coated box board under different temperatures and different humidity conditions was compared, and the optimal design variable value range was set. The experimental results show that after the first level of optimization, the overall mass of the structure is reduced from the initial 39.42 kg to 31.18 kg and the optimization efficiency is 20.90%; the maximum relative deformation of the flap structure has increased from 0.143 mm to 0.198 mm, despite having the maximum tension. The opening displacement has increased, but it still meets the sealing deformation requirements. The design and performance discussion of the overall packaging box of environmentally friendly packaging materials have been completed relatively well.


Author(s):  
V. Ya. Shevchenko ◽  
O. A. Shilova ◽  
T. A. Kochina ◽  
L. D. Barinova ◽  
O. V. Belyi

Ways to protect vehicles and transport infrastructure from the effects of negative climate impacts, corrosion, icing, radiation, marine fouling, and biodestruction are considered based on scientific developments of Russian Academy of Sciences’ Institute of Silicate Chemistry. New methods and approaches to develop environmentally friendly protective coatings are considered.


Sign in / Sign up

Export Citation Format

Share Document