scholarly journals OPERATIONAL PROPERTIES OF CONSTRUCTION MATERIALS WITH PROTECTIVE COATINGS OBTAINED UNDER NON-STATIONARY TEMPERATURE CONDITIONS

Author(s):  
Середа Д.Б.

The structure and phase composition of chromium-alloy coatings consisting of the following phases are investigated in the work: when boron doping the coating on brass C68700 consists of phases: Cu3Al, CuB, CuZn2 and zones of solid solution Cr, Al, B in copper; during titanium doping Cu3Al and CuAl phases in the transition zone: phases CuTi and CuTi2 When tested on A572 steels, in conditions of sliding friction, the best wear resistance among the considered protective coatings are doped with titanium and boron. Their wear resistance is 1,8 – 2,1 times higher than that of coatings obtained under isothermal conditions. Under non-stationary temperature conditions, the microhardness reaches the following values: when doped with boron H100 = 16500 – 17500 MPa, when doped with silicon H100 = 13500 – 14500 MPa, when doped with titanium H100 = 15000 – 16000 MPa. The obtained results correlate with the indicators of wear resistance. A comparative analysis of the corrosion resistance of protective coatings obtained under non-stationary temperature conditions and isothermal conditions shows that they have a weight loss of 1.7–2.1 times less. It was found that when tested in a 30% aqueous solution of sulfuric acid, all protective coatings have good stability. Thus, when doped with boron, the weight loss is 15,2 g/m2, при when doped with silicon - 10,8 g/m2,  and when doped with titanium - – 9,9 g/m2.

2020 ◽  
Vol 864 ◽  
pp. 265-277
Author(s):  
Viacheslav Tarelnyk ◽  
Ievgen Konoplianchenko ◽  
Oksana Gaponova ◽  
Bogdan Sarzhanov

The work presented in this paper is devoted to the formation of thick-layer wear-resistant coatings by technologies based on electrospark alloying, an example of essential components hardening for the heavy-duty processing equipment operating under hydroabrasive wear conditions. The aim of the paper is to improve the manufacturing and repairing technologies for the helical surfaces of the screws made of 65Г, 30X13 and 40X steels and corrosion-resistant stainless steel 12X18H10T. The above aim has been achieved owing to applying the new environmentally friendly technologies for the formation of the surface layers, and also due to the choice of the surface layers that are most resistant against hydroabrasive wear, which choice being provided for by conducting the comparative tests on the samples made of the above said steel grades and strengthened in various ways. The analysis results of the hydroabrasive wear resistance of the samples made of steel and provided with protective coatings is presented.


2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Artem Vyacheslavovich Ryzhenkov ◽  
Gennady Viktorovich Kachalin ◽  
Alexey Feliksovich Mednikov ◽  
Aleksander Borisovich Tkhabisimov

Author(s):  
Середа Б.П. ◽  
Кругляк І.В.

The article discusses the formation of the structure of protective diffusion layers using composite saturating charges on structural materials with different carbon content. A thermodynamic analysis of the gas phase at saturation has been carried out. The composition of the gas phase has been determined. Gaseous products interact with elements of the powder system (Al, Mo, Cr) and are transformed into the gas phase (CrH, CrOH, CrСl, CrСl2, CrСl3, СrОН, СrОСl2, CrI, CrI2, CrI3, МоСl, МоСl2, МоСl3, МоСl4, МоОСl, МоОСl2, МоI, МоI2, МоI3, МоI4). Using 3D modeling of microstructures, it was possible to more fully establish the nature of the distribution of phases and inclusions in the diffusion layer. The relationship between the 3D microstructure of the material and its physical and mechanical properties made it possible to carry out modeling to obtain the optimal composition of the developed composite charge for saturation. Diffuse layers are formed on the surface of structural materials, which contain Mo2C and α phases - the Cr, Al, Mo phase, the inclusion of Fе7Мо6, (Fe, Сr, Al, Mo)23С6. Carbides of three types were found: hexagonal chromium carbide Сr7C3 and carbides Мо2С, Cr23C, Fe3Mo3C и Fe2Mo2C. The physical, mechanical and operational properties of structural materials with protective diffusion coatings have been investigated. At tests in the conditions of sliding friction the best wear resistance among the considered diffusion coverings has vanadium, titanium and borized. Their wear resistance is 1.8 - 2.3 times greater than that of coatings obtained under isothermal conditions.


2013 ◽  
Vol 58 (3) ◽  
pp. 813-816 ◽  
Author(s):  
S. Byelikov ◽  
I. Volchok ◽  
I. Akimov

Abstract Heat-treated graphitized steels with different carbon, silicon and copper contents have been the object of study. The influence of the composition on the structure and wear resistance (weight loss of the specimen) of graphitized steels (after hardening and tempering) under the conditions of metal to metal dry sliding friction with the use of Amsler-type friction machines, has been investigated in this work. Research results have shown that the main factors affecting wear resistance of graphitized steels have been not only their metal base hardness, but the quantity, shape and distribution of graphite inclusions uniformity in the structure of such steels as well. A regression dependence of the quantity of specimen’s weight loss on carbon, silicon and copper content has been obtained in the work. The highest wear resistance was pertained by the steel having the following content: 1.60. . . 1.70%C; 2.20. . . 2.30%Si; 0.80. . . 0.90%Cu; 0.60. . . 0.70%Mn; 0.15. . . 0.18%Cr; 0.22. . . 0.25%Al; up to 0.015%S and 0.024%P.


Alloy Digest ◽  
2003 ◽  
Vol 52 (10) ◽  

Abstract Kaiser Aluminum alloy 4026 has high strength and good wear resistance, as well as galling resistance. It was developed for sliding friction resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating. Filing Code: AL-385. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Author(s):  
М.А. Чубинский ◽  
К.В. Чаузов

Несмотря на огромные запасы, древесина лиственницы до сего времени в незначительных объемах используется в строительной индустрии, других отраслях экономики, что связано как с технологическими сложностями ее переработки, так и недостаточной изученностью ее свойств. Одним из уникальных свойств древесины лиственницы сибирской (Larix sibirica) является ее повышенная естественная биостойкость, наряду с максимально высокой среди отечественных хвойных пород прочностью. Стойкость древесины лиственницы (Larix sibirica) к воздействию дереворазрушающих грибов Coniofora puteana значительно превышает стойкость сосны. В среднем потеря массы ядровой древесины лиственницы сибирской под воздействием дереворазрушающего гриба Coniophora puteana составляет 14,84%, снижаясь с увеличением возраста дерева, а контрольные образцы из ядровой древесины сосны в возрасте 90 лет имели потерю массы 57,8%. Возраст дерева является одним из наиболее значимых факторов, влияющих на степень биостойкости древесины. По мере его увеличения значительно повышается устойчивость деструктивному воздействию дереворазрушающих грибов Coniophora puteana. Положение образцов также влияет на степень биостойкости древесины, однако эта зависимость слабо выражена по сравнению с влиянием возраста и плотности древесины. Исследования кинетики разложения древесины лиственницы сибирской и роли экстрактивных веществ в развитии дереворазрушающих грибов позволяют утверждать наличие связи биостойкости и содержания в древесине экстрактивных веществ. Для изготовления клееного бруса из древесины лиственницы предложена клеевая композиция, включающая карбамидомеламиноформальдегидный клей и карбамидоформальдегидную смолу, модифицированную шунгитами. Ее применение позволяет получать клеевые соединения, не уступающие по прочности при скалывании массивной древесине, как по сухому образцу, так и после его вымачивания. Таким образом, клееный брус из древесины лиственницы сибирской характеризуется высокими показателями биостойкости, прочности и водостойкости. Despite vast reserves, larch wood so far in small volumes used in the construction industry and other sectors of the economy, which is connected as the technological difficulties of its treatment, as well as insufficient knowledge of its properties. One of the unique properties of the wood of Siberian larch (Larix sibirica) is its increased natural biological stability (decay resistant), along with the highest among the domestic softwood strength. Resistance Larch (Larix sibirica) to the effects of wood-destroying fungi Coniofora puteana is much higher than pine. The average weight loss of Siberian larch heartwood exposed wood-destroying fungi Coniophora puteana is 14.84%, decreasing with increasing age of the tree, and control samples of heartwood pine at age 90 had a weight loss of 57.8%. Age of a tree is one of the most significant factors affecting the degree of biological stability of wood. With the increase it significantly increases the stability of the destructive effects of wood-destroying fungi and Coniophora puteana. The position of the sample in tree also affects the degree of biological stability of wood, but this dependence is poorly developed in comparison with the influence of age and wood density. Studies of the kinetics of decomposition of Siberian larch wood and the role of extractives in the development of wood-destroying fungi suggest a link, and the decay resistant of the content in the wood extractives. For the manufacture of larch glued laminated beam proposed adhesive composition comprising urea and melamine-formaldehyde glue and urea-formaldehyde resins, modified shungites. Its use allows to obtain the bonds are not inferior in strength at shearing solid wood as dry sample, and after soaking. Thus, glued laminated beam from Siberian larch wood is characterized by high decay resistant, strength and water resistance.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


2021 ◽  
Vol 410 ◽  
pp. 475-481
Author(s):  
Anvar M. Kadyrmetov ◽  
Dmitri A. Popov ◽  
Yevgeny V. Snyatkov

The article presents the research results of the plasma jet multiple reflow effect over the multicomponent coating FeCoCrAlTiCuNiMo, obtained by plasma metallization in an open atmosphere, on its wear resistance under dry sliding friction. The research results indirectly confirm the influence of the coating entropy over the wear resistance increasing along of the reflow number growth.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


Sign in / Sign up

Export Citation Format

Share Document