scholarly journals Discussion on the Design and Performance of the Whole Packaging Box of Environmentally Friendly Packaging Materials

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mengwei Xie

More and more designers and companies in the packaging industry begin to pay attention to research on environmentally friendly packaging design. From studying the additional functions of packaging to starting to study the environmentally friendly materials of packaging, as well as the “zero-pollution” packaging advocated today, the traditional form and mode of packaging has changed. This article aims to study the design of the overall packaging box of environmentally friendly packaging materials and discuss its performance. In this paper, the platform construction method and the modulus definition classification method are used to calculate the positive axis stiffness of the single-layer board. The effect of coating process on the wear resistance of paper-based materials was studied, the wear resistance of box board base paper and coated box board under different temperatures and different humidity conditions was compared, and the optimal design variable value range was set. The experimental results show that after the first level of optimization, the overall mass of the structure is reduced from the initial 39.42 kg to 31.18 kg and the optimization efficiency is 20.90%; the maximum relative deformation of the flap structure has increased from 0.143 mm to 0.198 mm, despite having the maximum tension. The opening displacement has increased, but it still meets the sealing deformation requirements. The design and performance discussion of the overall packaging box of environmentally friendly packaging materials have been completed relatively well.

2013 ◽  
Vol 365-366 ◽  
pp. 1070-1073 ◽  
Author(s):  
Chia Chang Lin ◽  
Ting Ting Li ◽  
Ching Wen Lou ◽  
Jan Yi Lin ◽  
Jia Horng Lin

The dynamic puncture resistance of multi-layer integrated composite which was comprised of glass fabric reinforcement or Kevlar fabric reinforcement and nonwovens were discussed as related to recycled Kevlar fibers amount, number of layer and K-ply position for purpose of cost reduction and performance improvement. The result shows that, 20 wt% Kevlar fibers contained in nonwovens have the optimum puncture resistance. And the dynamic puncture force increases linearly with number of layers, and also improves proportionally as increasing number of K-ply. The resultant multi-layer composite is expected to be used as body armor interlayer and packaging materials.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


2021 ◽  
Vol 303 ◽  
pp. 01005
Author(s):  
Dmitry Lubyanoi ◽  
Evgeny Pudov ◽  
Evgeny Kuzin ◽  
Olga Semenova

The article shows the relevance of the use of alloyed cast iron in mining and metallurgical engineering. The article discusses the technologies for producing naturally alloyed cast iron. For working bodies and friction units of mining machines, such as pumps, coal pumps, hydrocyclones, crushers and mills. The main type of wear for them is abrasive. To increase the wear resistance of cast iron the production of cast iron has not been sufficiently studied yet. Although the use of cast iron in a complex alloyed with manganese, silicon, chromium, titanium and vanadium has been studied. The article studies the influence of manganese, titanium and vanadium on the mechanical properties and performance of machine parts and products of mining and metallurgical production in contact with high-temperature and highly abrasive media. The rational content of titanium and vanadium in gray cast irons is established in the range of 0.05-0.1%, which ensures their heat resistance and increases their wear resistance. The content of these elements can be increased to 0.07-0.12%. Bushings made of this cast iron have the required wear resistance and can increase the operational reliability of the equipment in the conditions of mining and metallurgical production. They also replace non-ferrous metals, as well as products obtained by powder metallurgy methods.


2013 ◽  
Vol 341-342 ◽  
pp. 92-95
Author(s):  
Li Jun Wang ◽  
Jian Jun Hao ◽  
Yue Jin Ma ◽  
Jian Guo Zhao ◽  
Jian Chang Li

Using plasma spraying equipment to prepare Al2O3-13wt%TiO2 coating on Q235 substrate. Study of its organization and performance, test the performance of coating microhardness and the resistance of friction and wear resistance then optimize the spraying process parameters. The surface of the coating performance was studied by SEM. The results show that, Coating microhardness can be as high as 1132HV, Far more than the matrix microhardness. The minimum average wear weightlessness of Sample surface is 0.95mg. Greatly improve the wear resistance


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1270 ◽  
Author(s):  
Motloung ◽  
Ojijo ◽  
Bandyopadhyay ◽  
Ray

The interest in designing new environmentally friendly materials has led to the development of biodegradable foams as a potential substitute to most currently used fossil fuel–derived polymer foams. Despite the possibility of developing biodegradable and environmentally friendly polymer foams, the challenge of foaming biopolymers still persists as they have very low melt strength and viscosity as well as low crystallisation kinetics. Studies have shown that the incorporation of cellulose nanostructure (CN) particles into biopolymers can enhance the foamability of these materials. In addition, the final properties and performance of the foamed products can be improved with the addition of these nanoparticles. They not only aid in foamability but also act as nucleating agents by controlling the morphological properties of the foamed material. Here, we provide a critical and accessible overview of the influence of CN particles on the properties of biodegradable foams; in particular, their rheological, thermal, mechanical, and flammability and thermal insulating properties and biodegradability.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1038
Author(s):  
Sergey N. Grigoriev ◽  
Marina A. Volosova ◽  
Sergey V. Fedorov ◽  
Mikhail Mosyanov

The primary purpose of this work was to study the effectiveness of using diamond-like coatings (DLC) to increase the wear resistance of carbide end mills and improve the surface quality of the processed part when milling aluminum alloy and low-carbon steel. The functional role of forming an adhesive sublayer based on (CrAlSi)N immediately before the application of the external DLC film by plasma-enhanced chemical vapor deposition (PECVD) technology in the composition of a multicomponent gas mixture containing tetramethylsilane was established in the article. The article shows the degree of influence of the adhesive sublayer on important physical, mechanical, and structural characteristics of DLCs (hardness, modulus of elasticity, index of plasticity, and others). A quantitative assessment of the effect of single-layer DLCs and double-layer (CrAlSi)N/DLCs on the wear rate of end mills during operation and the surface roughness of machined parts made of aluminum alloy AlCuMg2 and low-carbon steel 41Cr4 was performed.


2020 ◽  
Vol 12 (2) ◽  
pp. 1-20
Author(s):  
Sourav Das ◽  
Anup Kumar Kolya

In this work, the authors extract information on distinct baseline features from a popular open-source music corpus and explore new recognition techniques by applying unsupervised Hebbian learning techniques on our single-layer neural network using the same dataset. They show the detailed empirical findings to simulate how such an algorithm can help a single layer feedforward network in training for music feature learning as patterns. The unsupervised training algorithm enhances the proposed neural network to achieve an accuracy of 90.36% for successful music feature detection. For comparative analysis against similar tasks, they put their results with the likes of several previous benchmark works. They further discuss the limitations and thorough error analysis of the work. They hope to discover and gather new information about this particular classification technique and performance, also further understand future potential directions that could improve the art of computational music feature recognition.


2014 ◽  
Vol 968 ◽  
pp. 80-83
Author(s):  
Chuan Bao Wu ◽  
Bo Qiao

A novel kind of environmentally friendly composite materials containing upper part of rice straw segments (URSS), poly (vinyl alcohol) (PVA) and waste paper (WP) were prepared by hot-pressing at 140°C for 10 min. The tensile strength, tensile elongation and hardness of composites were measured. Results showed that the tensile strength and the strength at tensile break of the composites first increased and then decreased with increasing PVA content. Tensile strength was higher than the strength at tensile break at different PVA contents, indicating that URSS/PVA/WP composite materials had certain toughness. Otherwise, URSS/PVA/WP composite materials had higher tensile strength than URSS/PVA composites. The tensile strengths of them were respectively 9.25 MPa and 3.9 MPa when prepared at PVA content of 40%. The hardness of composites lay between 90 and 96. Negligible difference exists in every composite.


Sign in / Sign up

Export Citation Format

Share Document