Preparation and Characterization of Polycaprolactone / Graphene / Zinc Oxide Composites

2021 ◽  
Vol 877 ◽  
pp. 21-26
Author(s):  
Shuai Yuan ◽  
Lin Yuan ◽  
Chen Gao ◽  
Xue Fei Hu ◽  
Chin San Wu ◽  
...  

Biodegradable composite from polycaprolactone (PCL) and Graphene/zinc oxide (Graphene/ZnO) is studied. The Graphene/ZnO content is at 0.5%, 1.5% in PCL. Neat PCL and composites were characterized by microstructure, mechanical properties and thermal properties. Scanning electron micrographs show that the additive has agglomerated in PCL/Graphene/ZnO. Agglomeration of the filler results in reduced tensile properties of the composite. The result from XRD indicates Graphene/ZnO can improve the crystallinity of PCL. According to the results of buried soil test and analysis, Graphene/ZnO can reduce the biodegradation rate of PCL and make the material more durable. This new biodegradable composite material can be used as a new environmentally friendly material.

Materials ◽  
2005 ◽  
Author(s):  
Levent Aktas ◽  
Sudha Dharmavaram ◽  
M. Cengiz Altan

Effect of nanoclay on the thermo-mechanical properties of BT250E-1 epoxy resin is investigated. Nanocomposite parts containing 0, 2 and 10wt. % of Cloisite® 30B nanoclay are fabricated by copulverization of nanoclay with epoxy resin at −25°C. Desired amounts of solid epoxy resin and nanoclay are placed into a grinder and copulverized for 20 seconds. The resulting fine powder is then cured using an APA2000 rheometer by using the time-temperature profile provided by the resin supplier. Five disk-shaped parts for each nanoclay content are fabricated. Two rectangular samples are cut out from each disk and used for characterization of mechanical properties and microstructure. Glass transition temperature is observed to deteriorate by 5% and 10% with the addition of 2 and 10wt. % nanoclay, respectively. Three-point bending test results indicate up to 28% improvement in flexural stiffness whereas flexural strength is observed to degrade by 57% over the range of nanoclay loading. Scanning electron microscopy indicates extensive nanoclay agglomeration. In order to characterize the nanoclay cluster morphology, several scanning electron micrographs are captured at 500x magnification. Nanoclay clusters and their size distribution are then identified by digital image processing. It is found that the average cluster size is 2-fold higher at nanocomposites containing 10wt.% nanoclay compared to 2wt.%. Transmission electron microscopy indicates several nanovoids trapped in the intra-cluster regions. The existence of these voids is also verified by density measurements of the cured samples of the epoxy with and without nanoclay. The reduction observed in the flexural strength is believed to be due to these nanovoids and nanoclay agglomeration.


2011 ◽  
Vol 117-119 ◽  
pp. 1129-1132
Author(s):  
Bo Liu ◽  
Hai Feng Chen ◽  
Pei Song Tang

In this experiment, pyrophyllite as the main materials used the flame photometer to measure adsorption. Using the qualitative analysis of the samples of XRD with internal structure and found that pyrophyllite used in the experiment as a natural mineral, the presence with other minerals. Meanwhile, scanning electron micrographs (SEM) from the display showed that the effect of pyrophyllite adsorption for cations should be more significant. Therefore, this experiment focused on the time, Na+ concentration, on the pyrophyllite and different pyrophyllite concentrations (adsorbent dosage) effect on the adsorption, in addition to the adsorption dynamics. The results showed that pyrophyllite adsorption sodium in the best time of equilibrium was 20 minutes, the concentration of NaCl was 50 mg/L, pH = 7, temperature was 313 K, the concentration of pyrophyllite was 5 mg/L.


2014 ◽  
Vol 1611 ◽  
pp. 95-104 ◽  
Author(s):  
Nadira Mathura ◽  
Duncan Cree ◽  
Ryan P. Mulligan

ABSTRACTIn many tropical countries coconut (coir) fiber production is a major source of income for rural communities. The Caribbean has an abundance of coconuts but research into utilizing its by-products is limited. Environmentally friendly coir fibers are natural polymers generally discarded as waste material in this region. Research has shown that coir fiber from other parts of the world has successfully been recycled. This paper therefore investigates the mechanical properties of Caribbean coir fiber for potential applications in civil engineering.Approximately four hundred fibers were randomly taken from a coir fiber stack and subjected to retting in both distilled and saline water media. The mechanical properties of both the retted and unretted coir fibers were evaluated at weekly increments for a period of 3 months. Tensile strength test, x-ray diffraction analysis and scanning electron micrographs were used to assess trends and relationships between fiber gauge lengths, diameter, tensile strength and Young’s modulus. Diameters ranged between 0.11 mm-0.46 mm, while fiber samples were no longer than 250 mm in length. The tensile strength and strain at break decreased as the gauge length increased for both unretted and retted fibers. The opposite occurred for the relationship between the gauge length and Young’s modulus. Additionally, the tensile strength and modulus decreased as the fiber diameter increased. Neither distilled nor saline water improved the coir fiber’s crystalline index. Scanning electron micrographs qualitatively assessed fiber surfaces and captured necking and microfibril degradation at the fractured ends.The analysis revealed that the tensile strength, modulus, strain at break and crystallinity properties of the Caribbean coir fibers were comparable to commercially available coir fiber which are currently being used in many building applications.


Author(s):  
Teresa D. Golden ◽  
Jeerapan Tientong ◽  
Adel M.A. Mohamed

Electrodeposition of only molybdenum onto substrates is difficult, therefore molybdenum is typically deposited with iron-based alloys such as nickel. The deposition of such alloys is known as an induced codeposition mechanism. The electrodeposition of nickel-molybdenum alloys using alkaline plating solutions is covered in this chapter. The mechanism for deposition of nickel-molybdenum is reviewed, as well as the influence of the plating parameters on the coatings. Characterization of the coatings by scanning electron microscopy and x-ray diffraction is discussed and how deposition parameters affect morphology, composition, and crystallite size. Nickel-molybdenum alloys offer enhanced corrosion protection and mechanical properties as coatings onto various substrates. A survey of the resulting hardness and Young's modulus is presented for several research studies. Corrosion parameters for several studies are also compared and show the percentage of molybdenum in the coatings affects these values.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 78
Author(s):  
C. Thiruvasagam ◽  
S. Prabagaran ◽  
P. Suresh

The research paper involves fiber composites form a special category materials that are contributing to present swaping of manufactured  hybrid  which finds traditional and non traditional applications. The study explains which are accentuates and optimizing for the recently recognized snake grass standard materials. In this article, the prospecting performance characterization of SG fiber is selected and contrasted as per the ASTM standard. This study additionally manages the examination apply different phenomena of this stages in Jute and snake as fortifications utilized index ended a try. Experiments have been conducted on normal Filaments, snake grass, Glass Fiber and Jute to analyse their Mechanical properties. The common strands are orchestrated in the flat and vertical heading as transferred quality on all sides. Microstructural analysis of these hybrid composite is observed using Scanning  Electron Microscope that reveals bonding and Filament breaksge, Voids and Fiber decover which are further investigated.


2005 ◽  
Vol 475-479 ◽  
pp. 1161-1164 ◽  
Author(s):  
Jing Jing Liu ◽  
Zuo Wan Zhou ◽  
Kai Wang ◽  
Yanxia Li

Tin doped tetra-pod shaped ZnO (T-ZnO) were fabricated by equilibrant airflow reaction method. The microstructure of tin doped T-ZnO was characterized by X-ray Diffraction analysis and Scanning Electron Microscope. The results demonstrated that most of tin acted as a catalyst during the ZnO crystal growth process and the others reacted with ZnO to generate Zn2SnO4. Tin had catalytic influences on the morphology of T-ZnO, which promoted predominant growth on the c axis of ZnO crystal at the addition of 15% in weight and advanced the growth on the a axis at higher weight proportion.


2005 ◽  
Vol 287 ◽  
pp. 63-68 ◽  
Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  

To improve the mechanical properties of concretes containing recycled aggregates, pozzolanic materials were used to decrease the porosity of the recycled aggregates. These pozzolanic materials were adhered on the surface of recycled aggregates and closed the open pores so that the water absorption was decreased 1~2% as the amount of adsorption was increased. Compressive strength of cement mortars and concretes using surface treated recycled aggregates reaches above 95% of the strength of its natural counterparts. Investigation of the microstructures using the scanning electron micrographs showed the formation of dense interface after the adsorption treatment of pozzolanics to recycled aggregates.


Author(s):  
Malte L. Flachmann ◽  
Michael Seitz ◽  
Wilfried V. Liebig ◽  
Kay A. Weidenmann

AbstractComposite peening offers the opportunity to introduce ceramic blasting particles into metallic base material. By embedding Al2O3 particles, mechanical properties of aluminum can be improved. However, those surface modifications might negatively impact corrosion resistance and thus shorten the lifetime of components. This study analyzes corrosion properties of peened aluminum in chloride solution via immersion, scanning electron microscopy and polarization. The data of observed microstructures indicate that peening accelerates corrosion and that intergranular corrosion is the main force of degradation in contrast with pitting corrosion of monolithic aluminum.


Sign in / Sign up

Export Citation Format

Share Document