Preparation and Characterization of Orodispersible Films Loaded Diclofenac Sodium/β-Cyclodextrin Inclusion Complexes

2021 ◽  
Vol 901 ◽  
pp. 86-91
Author(s):  
Phennapha Saokham ◽  
Kanokporn Burapapadh ◽  
Narumon Changsan ◽  
Chutima Sinsuebpol

Orodispersible films (ODFs) is orally pharmaceutical dosage form that rapidly disintegrates and instantly releases the drug when placed on the tongue. This study was firstly aimed to investigate physicomechanical properties of ODFs containing diclofenac sodium/β-cyclodextrin (DS/βCD) inclusion complexes prepared by solvent casting method. The influence of plasticizer, βCD and DS on hydroxypropyl metlhycellulose (HPMC) film was studied. Increasing of plasticizer concentration (e.g. PEG400 amd glycerol) resulted in decrement of disintegration time, strength and elasticity of HPMC films. When βCD was incorporated, opaque films were observed. Presence of βCD resulted in degrading of physicomechanical properties, except percentage of elongation representing the film’s elasticity. βCD films containing DS (DS/βCD films) were more brittle and transparent than blank βCD films. Amount of incorporated DS influenced on disintegration time and strength of obtained films. Cross-section scanning electron microscope (SEM) photomicrographs showed spherical particles scattered on DS/βCD films illustrating the occurrence of DS/βCD inclusion complexes during casting process. The DS/βCD inclusion complexes were then confirmed in both solid and solution. Furthermore, DS/βCD ODFs were prepared by incorporation of artificial sweeteners in DS/βCD films. It was found that DS/βCD ODFs containing xylitol were more brittle and their disintegration times were faster then those containing sucralose. Dissolution profiles were investigated then reported that release kinetic of DS/βCD films and ODFs were fitted to Higuchi model. In summary, the βCD-based ODFs containing DS were successfully developed.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 778
Author(s):  
Emőke-Margit Rédai ◽  
Paula Antonoaea ◽  
Nicoleta Todoran ◽  
Robert Alexandru Vlad ◽  
Magdalena Bîrsan ◽  
...  

The most used pharmaceutical formulations for children are syrups, suppositories, soft chewable capsules, and mini-tablets. Administrating them might create an administration discomfort. This study aimed to develop and evaluate orodispersible films (ODFs) for pediatric patients in which the fluoxetine (FX) is formulated in the polymeric matrix. Six FX fast dissolving films (10 mg FX/ODF), FX1, FX2, FX3, FX4, FX5, and FX6, were prepared by solvent casting technique. In the composition of the ODFs, the concentration of the hydroxypropyl methylcellulose and the concentration of the propylene glycol were varied. Each formulation of fluoxetine ODF was evaluated by determining the tensile strength, folding endurance, disintegration, behavior in the controlled humidity and temperature conditions, and adhesiveness. All the obtained results were compared with the results obtained for six ODFs prepared without FX. The disintegration time of the FX ODFs was of maximum 88 s for FX2. Via the in vitro releasing study of the FX from the ODFs it was noticed that FX1 and FX2 allow a better release of the drug 99.98 ± 3.81% and 97.67 ± 3.85% being released within 15 min. From the obtained results it was also confirmed that FX ODFs were found to follow first-order release kinetic.


2014 ◽  
Vol 66 (8) ◽  
pp. 1102-1111 ◽  
Author(s):  
Maren Preis ◽  
Dorothee Gronkowsky ◽  
Dominik Grytzan ◽  
Jörg Breitkreutz

Author(s):  
Uday Kumar Thummala ◽  
Eswar Guptha Maddi ◽  
Prameela Rani Avula

The fixed dose combination of ledipasvir (LDV) and sofosbuvir (SBV) is approved by USFDA in 2014 for the treatment of Hepatitis C virus infection and is available in the form of tablets. In the present work, the principal aim is to explore orodispersible films type dosage form to impart its characteristic advantages to these poorly soluble drugs so as to improve their bioavailability and ease of administration. Solid dispersions with low viscosity grade methyl cellulose A 15-LV (MC A 15-LV) at different ratios with LDV and SBV were prepared and evaluated to check their ability in improving the solubility of the drugs. The best drug to polymer ratio was selected to develop the films, using other excipients including plasticizer and superdisintegrant. Solvent casting method was used to develop the films. Three formulation parameters were selected as independent factors viz. thickness of the film (50-150 µm), concentration of superdisintegrant (sodium starch glycolate 6-10%) and concentration of plasticizer (polyethylene glycol 400, 10-20%). Disintegration time (DT), time for 90% dissolution (T90%) of LDV and time for 90% dissolution of SBV were taken as the response variables. The experiment was designed using Box-Behnken design. Among the polymers, MC A 15-LV produced maximum solubility at 1:2 ratio. The films obtained were found to have good tensile strength and % elongation with disintegration times in the range of 43-162 sec. The T90% values for LDV and SDV were found to be in the range of 8.4-21.2 min and 7.2-18.4 respectively. All the three formulation factors were found to have significant effect on the three responses. The optimum formulation was identified at 100 µm thickness, 10% superdisintegrant and 20% plasticizer which showed DT of 89 sec with T90% values of 8.4 min and 7.2 min for LDV and SBV respectively. The rapid disintegration and dissolution of the films signified that the set objective was achieved.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad M. Hammami ◽  
Rajaa F. Hussein ◽  
Reem AlSwayeh ◽  
Syed N. Alvi

Abstract Objective To evaluate in vitro quality of enteric-coated 50 mg diclofenac sodium tablet formulations on Saudi market. Results A reference and seven generic (G1-7) formulations were commercially available in December 2019/January 2020 and were assessed within 25–75% of manufacture-expiration period. Weight variation (range as% difference from mean, n = 20), active substance content (ASC, mean (SD) as% difference from label, n = 20), hardness (mean (SD), n = 10), and friability (% weight loss, n = 20) were 97–103%, 102.0% (3.4%), 15.4 (1.1) kg, and 0.24%, respectively, for the reference. For G2-7, they were ≤ ±5%, 98.6% (4.0%) to 109.9% (1.8%), 11.9 (0.9) to 18.3 (0.8) kg, and ≤ 0.00 to 0.75%, respectively. G1 ASC, hardness, and friability were 111.3% (1.7%), 20.1 (1.7) kg, and 1.10%, respectively. Disintegration time (n = 6) and dissolution profile (n = 8) were also determined. No formulation disintegrated or released ˃ 0.1% of label ASC in 0.1 N HCl for 2 h. The reference disintegrated in 15:00 min:seconds and released a mean (range) of 100% (99–103%) of label ASC by 45 min in phosphate buffer (pH = 6.8). G1-7 disintegrated in 8:53 to 20:37 min:seconds and released 81% (69–90%) (G1) to 109%. Except for borderline performance of G1, all formulations passed in vitro quality tests according to United States Pharmacopoeia.


2016 ◽  
Vol 52 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Haroon Rahim ◽  
Abdul Sadiq ◽  
Shahzeb Khan ◽  
Kamran Ahmad Chishti ◽  
Fazli Amin ◽  
...  

ABSTRACT The aim of this study was to evaluate binding potential of Mulva neglecta mucilage (MNM) with subsequent comparison to PVP K30. Eight batches of Diclofenac sodium tablets were prepared by wet granulation technique keeping different concentrations (4, 6, 8 & 10% w/w) of Mulva neglecta mucilage (extracted from leaves of Mulva neglecta) and PVP K30 as standard binder. The granules of formulated batches showed bulk density (g/mL) 0.49 ± 0.00 to 0.57 ± 0.00, tapped density (g/mL) 0.59 ± 0.01 to 0.70 ± 0.01, Carr's index 09.27 ± 0.95 to 19.65 ± 0.59, Hausner's ratio 1.12 ± 0.00 to 1.24 ± 0.01 and angle of repose 30.37 ± 2.90 °C to 36.86 ± 0.94 °C. Tablets were compressed to hardness 7.50 to 7.95 kg/cm2. The tablets showed 0.39 ± 0.02 to 0.39 ± 0.01% friability and 7:20 to 14:00 min disintegration time. Granules and post-compression evaluation revealed that parameters assessed were all found to be within the pharmacopoeial limits. The results (hardness, disintegration and dissolution) proved that Mulva neglecta mucilage has better binding capacity for preparation of uncoated tablet dosage form as compared to PVP K30. Among all the formulations, MN-1 to MN-4 showed slow release as compared to PV-1 to PV-4 and thereby Mulva neglecta mucilage exhibited satisfactory drug release phenomenon tablets of diclofenac sodium.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 470 ◽  
Author(s):  
Konstantina Chachlioutaki ◽  
Emmanouil K. Tzimtzimis ◽  
Dimitrios Tzetzis ◽  
Ming-Wei Chang ◽  
Zeeshan Ahmad ◽  
...  

Child-appropriate dosage forms are critical in promoting adherence and effective pharmacotherapy in pediatric patients, especially those undergoing long-term treatment in low-resource settings. The present study aimed to develop orodispersible films (ODFs) for isoniazid administration to children exposed to tuberculosis. The ODFs were produced from the aqueous solutions of natural and semi-synthetic polymer blends using electrospinning. The spinning solutions and the resulting fibers were physicochemically characterized, and the disintegration time and isoniazid release from the ODFs were assessed in simulated salivary fluid. The ODFs comprised of nanofibers with adequate thermal stability and possible drug amorphization. Film disintegration occurred instantly upon contact with simulated salivary fluid within less than 15 s, and isoniazid release from the ODFs in the same medium followed after the disintegration profiles, achieving rapid and total drug release within less than 60 s. The ease of administration and favorable drug loading and release properties of the ODFs may provide a dosage form able to facilitate proper adherence to treatment within the pediatric patient population.


Author(s):  
SATYAJITH PANDA ◽  
NODAGALA HEMALATHA ◽  
PANCHAGNULA UDAYA SHANKAR ◽  
SRINIVASA RAO BARATAM

Objective: In this study, a polysaccharide isolated from the seeds of Cajanus cajan (pigeon pea) was investigated as a super disintegrant in the orodispersible tablets of diclofenac sodium. Methods: Diclofenac sodium tablets were prepared separately using different concentrations (5%, 7.5%, 10%, and 15% w/w) of isolated Cajanus cajan seed polysaccharide (natural) and sodium starch glycolate (synthetic) as super disintegrant by the direct compression method. Evaluation of tablets was done for various pre-and post-compression parameters. The stability studies were performed on optimized formulation F5. The disintegration time and in vitro drug release of the formulation F5 was compared with pregelatinized starch and synthetic super disintegrant (sodium starch glycolate). Results: The drug-excipient interactions were characterized by Fourier transform infrared studies. The Optimized formulation F5 containing 15% polysaccharide showed wetting time of 118.7 seconds with 105.3 seconds of disintegration time and 95.61% dissolved in 3 min. Conclusion: The present work revealed that Cajanus cajan seed polysaccharide has a good disintegrating agent in the formulation of orodispersible tablets.


2016 ◽  
Vol 27 (1) ◽  
pp. 58-61
Author(s):  
Valeriu Iancu ◽  
Florentina Roncea ◽  
Radu George Cazacincu ◽  
Dumitru Lupuleasa

Abstract Orally disintegrating tablets (ODTs) are dosage forms which disintegrate in mouth within seconds without need of water. This type of quality in dosage form can be attained by addition of different varieties of excipients. Pharmaburst™ 500 is a co-processed excipient system which allows rapid disintegration and low adhesion to punches. The aim of the present study was to develop and evaluate 25 mg diclofenac sodium ODTs (orodispersible tablets) batches by direct compression method at different compression forces 10 kN (F1) and 20 kN (F2) and directly compressible excipients used in different ratio (Avicel PH 102, magnesium stearate and coprocessed excipient Pharmaburst™ 500, 70% and 80% w/w). The obtained batches were analyzed for appearance, tablet thickness, uniformity of weight, hardness, friability, disintegration time, and non-compendial methods (wetting time). Co-processed Pharmaburst™ 500 excipient 70% used for sodium diclofenac ODT obtaining determined good results for quality control tests evaluation.


Sign in / Sign up

Export Citation Format

Share Document