Study of the Diffusible Hydrogen Content Affected from the Welding Electrode Humidity

2021 ◽  
Vol 902 ◽  
pp. 43-48
Author(s):  
Anupong Areerak ◽  
Ramil Kesvarakul ◽  
Washira Chaysuwan ◽  
Khompee Limpadapun ◽  
Jenjira Sukmanee

The influences of moisture corruption and drying considerations on diffusible hydrogen were examined in this study. Two trials were carried out on an arc welding procedure, with the first being an assessment of the results of moisture contamination and the second being a test of the impact of welding constraints on diffusible hydrogen content. For example, the dispersible hydrogen found in welds was likened to the hydrogen levels of different unused electrodes. To calculate the proper drying constraints (Time and Temperature) for an applicable moisture contamination level in the weld electrode, an empirical equation was devised. For electrodes with a small diameter and welding parameter limits typically used for out-of-position welding, the equation is appropriate.

2020 ◽  
Vol 20 (4) ◽  
pp. 27-37
Author(s):  
J. Klett ◽  
T. Hassel

AbstractIn shielded metal arc welding, the major factors influencing hydrogen uptake into the weld metal are (i) the hydrogen content of the base metal, (ii) hydrogen input by the welding consumable, and (iii) the hydrogen introduced by the atmosphere surrounding the arc process. In this study, the relative contribution of these factors is investigated and compared to each other for the case of underwater wet shielded metal arc welding. To assess the influence of the stick electrode’s moisture (capillary introduced water during handling operations) on the diffusible hydrogen in wet welded samples, wet and dry electrodes were welded at four different water depths. The moisture was absorbed through the sharpened electrode tip only, to ensure close to service conditions. The results show that the moist stick electrode coatings lead to 22.6% higher average diffusible hydrogen content in the weld metal (0.5 m water depth an average). However, the effect disappears with increasing water depths (no difference in 60 m water depth).


2013 ◽  
Vol 545 ◽  
pp. 182-187 ◽  
Author(s):  
Nusara Tiyasri ◽  
Bovornchok Poopat

This work aims to develop welding procedure for small diameter longitudinal welded clad pipe made from clad plate. High strength carbon steel base metal bonded with 316L stainless steel clad layer was used in this study. The dissimilar materials at the weld joint and accessibility limitation of small diameter present difficulty in welding process selection to achieve weld soundness. The joint and welding se¬quence are designed to avoid solidification cracking. Nickel base over matching filler is used on the clad side. Typical joint configuration is double V groove weld without clad peel back to minimize the number of passes inside the pipe. Firstly, welding is done on the carbon steel side by using Shielded Metal Arc Welding (SMAW) and Submerged Arc Welding (SAW) with carbon steel electrodes. Then, welding on the clad side is done by using ERNiCrMo-3 filler metal. Two different procedures for the clad side are studied. The first procedure is to weld the clad side by using Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding pulse current (GMAW-pulse) and another procedure is to weld the clad side by using the SAW procedure. Hot cracking was observed in the case of SAW procedure at the clad weld centerline due to high heat input and high level of dilution. Mechanical properties and microstructure are evaluated. Clad weld by use of GTAW and GMAW-pulse could give sound weld metal. The tensile and yield strength of all weld metal were found to be greater than that of base metal and 100% shear failures were observed. Charpy impact energy of weld and HAZ at -10°C was found to be over 100 joules. Hardness of weld and HAZ area are surveyed over the weld cross section to determine local hardening. Additionally intergranular corrosion testing was carried out on the clad weld side and then bend testing was done. No crack was observed. Therefore, GTAW and GMAW-pulse clad weld procedure could give required properties according to clad line pipe standard, reduce cost of production and increase productivity compared to the peel back method.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3750 ◽  
Author(s):  
Jan Klett ◽  
Thomas Wolf ◽  
Hans Jürgen Maier ◽  
Thomas Hassel

The European standard ISO 3690 regulates the measurement of diffusible hydrogen in arc-welded metal. It was designed for different welding methods performed in dry atmosphere (20% humidity). Some details of the standard are not applicable for wet underwater welding. The objective of this study was to extend the applicability of DIN EN ISO 3690:2018-12 to underwater wet-shielded metal arc welding (SMAW). Four different aspects regulated within the standard were accounted for: (1) sample dimensions and number of samples taken simultaneously; (2) time limitations defined by the standard regarding the welding and the cleaning process; (3) time, temperature, and method defined for analysis of the diffusible hydrogen content; (4) normalization of the hydrogen concentration measured. Underwater wet welding was performed using an automated, arc voltage-controlled welding machine. The results are discussed in light of standard DIN EN ISO 3690, and recommendations are provided for the analysis of diffusible hydrogen content upon underwater wet welding.


Alloy Digest ◽  
1983 ◽  
Vol 32 (8) ◽  

Abstract TRI-MARK TM-115 is a gas-shielded flux-cored welding electrode for continuous high deposition are welding. It is designed specifically for semiautomatic and automatic arc welding of high-strength low-alloy steels and quenched-and-tempered steels. This gas-sheilded tubular wire can be used for single and multiple-pass welding. It has outstanding low-temperature impact properties. Its applications including mining equipment, large vehicles and similar items. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-392. Producer or source: Tri-Mark Inc..


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1015
Author(s):  
Antonio Bulum ◽  
Gordana Ivanac ◽  
Eugen Divjak ◽  
Iva Biondić Špoljar ◽  
Martina Džoić Dominković ◽  
...  

Shear wave elastography (SWE) is a type of ultrasound elastography with which the elastic properties of breast tissues can be quantitatively assessed. The purpose of this study was to determine the impact of different regions of interest (ROI) and lesion size on the performance of SWE in differentiating malignant breast lesions. The study included 150 female patients with histopathologically confirmed malignant breast lesions. Minimal (Emin), mean (Emean), maximal (Emax) elastic modulus and elasticity ratio (e-ratio) values were measured using a circular ROI size of 2, 4 and 6 mm diameters and the lesions were divided into large (diameter ≥ 15 mm) and small (diameter < 15 mm). Highest Emin, Emean and e-ratio values and lowest variability were observed when using the 2 mm ROI. Emax values did not differ between different ROI sizes. Larger lesions had significantly higher Emean and Emax values, but there was no difference in e-ratio values between lesions of different sizes. In conclusion, when measuring the Emin, Emean and e-ratio of malignant breast lesions using SWE the smallest possible ROI size should be used regardless of lesion size. ROI size has no impact on Emax values while lesion size has no impact on e-ratio values.


2014 ◽  
Vol 625 ◽  
pp. 134-139
Author(s):  
Takenori Ono

This paper introduced about the in-process vibration testing method for small diameter endmill. By this method, the natural frequency and modal parameters such as mass, damping, and stiffness of the milling tool can be determined in the milling process. An oscillation of the vibrator is controlled by the function generator to apply the impact force at the appropriate cutting period. The measurement setup can determine the compliance curve by the measurement signals of the exiting force and tool deformation. To evaluate the feasibility of the new method, vibration tests were performed on a square endmill which has the diameter of 4 mm in the milling on brass material. Results of vibration tests show that modal parameters of the specific vibration mode can be determined by the new developed method.


Sign in / Sign up

Export Citation Format

Share Document