Exploration of Solid Phase Epitaxy of 3C-SiC on Silicon

2020 ◽  
Vol 1004 ◽  
pp. 132-138
Author(s):  
Marcin Zielinski ◽  
Sylvain Monnoye ◽  
Hugues Mank ◽  
Frank Torregrosa ◽  
Gregory Grosset ◽  
...  

In this contribution we investigate the formation at high temperature of an oriented 3C-SiC seed on various orientations of Si substrates “pre-carbonized” through Plasma Immersion Ion Implantation (PIII) process.

1983 ◽  
Vol 25 ◽  
Author(s):  
H. Yamamoto ◽  
H. Ishiwara ◽  
S. Furukawa ◽  
M. Tamura ◽  
T. Tokuyama

ABSTRACTLateral solid phase epitaxy (L-SPE) of amorphous Si (a-Si) films vacuum-evaporated on Si substrates with SiO2 patterns has been investigated, in which the film first grows vertically in the regions directly contacted to the Si substrates and then grows laterally onto SiO2 patterns. It has been found from transmission electron microscopy and Nomarski optical microscopy that use of dense a-Si films, which are formed by evaporation on heated substrates and subsequent amorphization by Si+ ion implantation, is essentially important for L-SPE. The maximum L-SPE length of 5–6μm was obtained along the <010> direction after 10hourannealing at 600°C. The kinetics of the L-SPE growth has also been investigated.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

1991 ◽  
Vol 235 ◽  
Author(s):  
Kin Man Yu ◽  
Ian G. Brown ◽  
Seongil Im

ABSTRACTWe have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.


2013 ◽  
Vol 228 ◽  
pp. 195-200 ◽  
Author(s):  
Bruno Bacci Fernandes ◽  
Rogério Moraes Oliveira ◽  
Mário Ueda ◽  
Samantha de Fátima Magalhães Mariano ◽  
Alfeu Saraiva Ramos ◽  
...  

2002 ◽  
Vol 16 (28n29) ◽  
pp. 4234-4237
Author(s):  
XUEQIN LIU ◽  
CONGMIAN ZHEN ◽  
YINYUE WANG ◽  
JING ZHANG ◽  
YUEJIAO PU ◽  
...  

Si 0.875-y Ge 0.125 C y ternary alloy films were grown on Si by ion implantation of C into Si 0.875 Ge 0.125 layers and subsequent solid phase epitaxy. It was shown that C atoms were nearly incorporated into substitutional sites and no SiC was formed in the SiGeC films by optimal two-step annealing. There is a prominent effect of C contents on carrier transport properties. Compared with strained Si 0.875 Ge 0.125 film, enhanced Hall mobility has been obtained in partially and fully strain compensated Si 0.875-y Ge 0.125 C y layer due to the reduction of lattice strain.


1988 ◽  
Vol 63 (4) ◽  
pp. 1065-1069 ◽  
Author(s):  
I. Mizushima ◽  
H. Kuwano ◽  
T. Hamasaki ◽  
T. Yoshii ◽  
M. Kashiwagi

Sign in / Sign up

Export Citation Format

Share Document