scholarly journals Interest of Using a Micro-Meter Spatial Resolution to Study SiC Semi-Conductor Devices by Optical Beam Induced Current (OBIC)

2020 ◽  
Vol 1004 ◽  
pp. 290-298
Author(s):  
Camille Sonneville ◽  
Dominique Planson ◽  
Luong Viet Phung ◽  
Pascal Bevilacqua ◽  
Besar Asllani

In this paper we present a new test bench called micro-OBIC used to characterized wide band gap semi-conductor. Micro-OBIC allows to get an Optical Beam Induced Current (OBIC) signal with a microscopic spatial resolution. We used micro-OBIC to characterize peripheral protection such as MESA, JTE or JTE in high voltage SiC device.

2000 ◽  
Vol 640 ◽  
Author(s):  
Lori Lipkin ◽  
Mrinal Das ◽  
John Palmour

ABSTRACTSingle crystal SiC is a wide band-gap semiconductor with material characteristics that make it quite suitable for high voltage and high current applications. However, these devices are currently limited by their passivation. Significant improvements have been made with oxides on SiC. The most notable oxide processes are the re-oxidation anneal, a stacked ONO dielectric, and nitridation using an NO or N2O anneal. Additional improvements in lateral MOSFET mobility have been achieved using a surface channel implant, and lower temperature implant activation anneals. However, the passivation remains a significant limitation for SiC power devices.


2007 ◽  
Vol 556-557 ◽  
pp. 1007-1010 ◽  
Author(s):  
Christophe Raynaud ◽  
Daniel Loup ◽  
Phillippe Godignon ◽  
Raul Perez Rodriguez ◽  
Dominique Tournier ◽  
...  

High voltage SiC semiconductor devices have been successfully fabricated and some of them are commercially available [1]. To achieve experimental breakdown voltage values as close as possible to the theoretical value, i.e. value of the theoretical semi-infinite diode, it is necessary to protect the periphery of the devices against premature breakdown due to locally high electric fields. Mesa structures and junction termination extension (JTE) as well as guard rings, and combinations of these techniques, have been successfully employed. Each of them has particular drawbacks. Especially, JTE are difficult to optimize in terms of impurity dose to implant, as well as in terms of geometric dimensions. This paper is a study of the spreading of the electric field at the edge of bipolar diodes protected by JTE and field rings, by optical beam induced current.


Author(s):  
P. Godignon ◽  
V. Soler ◽  
M. Cabello ◽  
J. Montserrat ◽  
J. Rebollo ◽  
...  

1998 ◽  
Vol 512 ◽  
Author(s):  
M. Frischholz ◽  
K. Nordgren ◽  
K. Rottner ◽  
J. Seidel ◽  
A. Schöner ◽  
...  

ABSTRACTThe optical beam induced current (OBIC) technique allows a direct imaging of high voltage PN junctions at a microscopic level under reverse operating conditions by measuring the local variation of the photocurrent. In this paper we focus on the application of the UV-OBIC technique for failure analysis of 4H SiC high voltage P+N diodes.4H SiC P+N diodes with a 2-zone junction termination extension were used. The diodes were characterized in terms of reverse leakage current and breakdown voltage. Various devices were chosen for failure analysis on the base of early breakdown and/or excessive leakage current for OBIC measurements to study extrinsic failures. As a reference we selected diodes that blocked more than 2 kV with a leakage current density of typically less than 0.1 μA/cm2.OBIC measurements have been used to detect failures in devices that manifest themselves as peaks or “hot spots” in the photocurrent distribution. Early breakdown of diodes could be attributed to formation of hot spots in the periphery of the diodes. The appearance of a hot spot preceded any noticeable increase in reverse leakage current and is thus a very sensitive tool to identify defective diodes already at low voltage levels.The photocurrent generated by illumination of hot spots has been measured as a function of reverse bias voltage and the current multiplication factor has been determined.


2000 ◽  
Vol 88 (12) ◽  
pp. 7313-7320 ◽  
Author(s):  
Malay Trivedi ◽  
Krishna Shenai

Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Author(s):  
Raquel Caballero ◽  
Leonor de la Cueva ◽  
Andrea Ruiz-Perona ◽  
Yudenia Sánchez ◽  
Markus Neuschitzer ◽  
...  

2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document