Density and Mechanical Properties of Selective Silicon Materials to Produce 3D Printed Paediatric Brain Model

2021 ◽  
Vol 1021 ◽  
pp. 220-230
Author(s):  
Ghaidaa A. Khalid

This study presents a step towards exploring the possibility of using silicon materials as a surrogate to produce a multi-material 3D printed soft silicone brain model to be used in the investigation of Traumatic Brain Injury (TBI) in paediatric populations. Silicone represents a popular choice of material due to its viscoelastic properties, 3D printability, and capability to be tuned to possess different properties. Dynamic oscillatory shear tests were carried out for seven types of silicon materials at three different speeds against a different range of frequencies. The mechanical parameters response has been ranked on, which is the most appropriate to try. It also agrees with the range of reported paediatric brain tissue imitating grey and white matter as a surrogate brain material. Utilising of silicone for 3D printing represents a new approach to fabricate surrogate models that closely mimic biofidelic features and advance the medical engineering discipline.

Author(s):  
Andrea Ehrmann ◽  
Daniel Görmer ◽  
Jannik Störmer

3D printing belongs to the emerging technologies of our time. While it enables producing new structures and makes individualized products affordable, 3D printed objects still suffer from low production speed and often insufficient mechanical properties. Both these problems can be tackled by combining 3D printing with substrates prepared by conventional technologies, e.g. textile fabrics. In this case, the adhesion between both partners is most challenging and defines for which possible applications such composites are suitable. Here, we report on a new approach to increase the adhesion between 3D printed materials and warp knitted fabrics, showing that in some cases a thermal after-treatment, in the simplest case performed by ironing, is able to significantly increase the adhesion between both materials.


2020 ◽  
Vol 66 (1) ◽  
Author(s):  
Yoko Okahisa ◽  
Keisuke Kojiro ◽  
Hatsuki Ashiya ◽  
Takeru Tomita ◽  
Yuzo Furuta ◽  
...  

Abstract Age is an important factor that dictates bamboo’s mechanical properties. In Japan, bamboo plants aged 3–5 years are selected for use as materials because of their robustness and decorative or craft-friendly characteristics. In this study, the age-dependent and radial sectional differences in bamboo’s dynamic viscoelastic properties in relation to lignin structural variation, were evaluated. We used Phyllostachys pubescens samples at the current year and at 1.5, 3.5, 6.5, 9.5, 12.5, and 15.5 years of age. There was a clear age dependence in the peak temperature of tan δ and in the yield of thioacidolysis products derived from β-O-4 lignin structures. The highest peak temperature tan δ value was detected in 3.5-year-old bamboo, which contained the highest amount of the thioacidolysis products. Moreover, tan δ’s peak temperature was always higher on the outer side, and the ratio of S/G thioacidolysis products was always higher on the inner side of bamboo plants of all ages. These results suggest that changes in bamboo’s thermal softening properties from aging are caused by the maturation and degradation of lignin in bamboo.


2021 ◽  
pp. 1-18
Author(s):  
N. Vinoth Babu ◽  
N. Venkateshwaran ◽  
N. Rajini ◽  
Sikiru Oluwarotimi Ismail ◽  
Faruq Mohammad ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mathilde Tiennot ◽  
Davide Iannuzzi ◽  
Erma Hermens

AbstractIn this investigation on the mechanical behaviour of paint films, we use a new ferrule-top nanoindentation protocol developed for cultural heritage studies to examine the impact of repeated relative humidity variations on the viscoelastic behaviour of paint films and their mechanical properties in different paint stratigraphies through the changes in their storage and loss moduli. We show that the moisture weathering impact on the micromechanics varies for each of these pigment-oil systems. Data from the nanoindentation protocol provide new insights into the evolution of the viscoelastic properties dsue to the impact of moisture weathering on paint films.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1661
Author(s):  
Katarzyna Adamiak ◽  
Katarzyna Lewandowska ◽  
Alina Sionkowska

Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.


2021 ◽  
Vol 8 (5) ◽  
pp. 70
Author(s):  
Marco Ferroni ◽  
Beatrice Belgio ◽  
Giuseppe M. Peretti ◽  
Alessia Di Giancamillo ◽  
Federica Boschetti

The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress–relaxation tests comprised of increasing strains followed by stress–relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1394
Author(s):  
Yong Sang Cho ◽  
So-Jung Gwak ◽  
Young-Sam Cho

In this study, we investigated the dual-pore kagome-structure design of a 3D-printed scaffold with enhanced in vitro cell response and compared the mechanical properties with 3D-printed scaffolds with conventional or offset patterns. The compressive modulus of the 3D-printed scaffold with the proposed design was found to resemble that of the 3D-printed scaffold with a conventional pattern at similar pore sizes despite higher porosity. Furthermore, the compressive modulus of the proposed scaffold surpassed that of the 3D-printed scaffold with conventional and offset patterns at similar porosities owing to the structural characteristics of the kagome structure. Regarding the in vitro cell response, cell adhesion, cell growth, and ALP concentration of the proposed scaffold for 14 days was superior to those of the control group scaffolds. Consequently, we found that the mechanical properties and in vitro cell response of the 3D-printed scaffold could be improved by kagome and dual-pore structures through DfAM. Moreover, we revealed that the dual-pore structure is effective for the in vitro cell response compared to the structures possessing conventional and offset patterns.


Sign in / Sign up

Export Citation Format

Share Document