scholarly journals The influence of thermal after-treatment on the adhesion of 3D prints on textile fabrics

Author(s):  
Andrea Ehrmann ◽  
Daniel Görmer ◽  
Jannik Störmer

3D printing belongs to the emerging technologies of our time. While it enables producing new structures and makes individualized products affordable, 3D printed objects still suffer from low production speed and often insufficient mechanical properties. Both these problems can be tackled by combining 3D printing with substrates prepared by conventional technologies, e.g. textile fabrics. In this case, the adhesion between both partners is most challenging and defines for which possible applications such composites are suitable. Here, we report on a new approach to increase the adhesion between 3D printed materials and warp knitted fabrics, showing that in some cases a thermal after-treatment, in the simplest case performed by ironing, is able to significantly increase the adhesion between both materials.

2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


Author(s):  
Andrea Ehrmann ◽  
Pia Steinmetz

Combining textile fabrics with 3D printing has been investigated intensively during the last years. Mostly, research concentrated on the adhesion between both partners of the composite or on the new freedom of design, enabled by combining these techniques. Here, we present examinations of the influence of elastic 3D printed patterns on the elongation and wearing out of elastic textile fabrics as well as on the tribological properties of the textile surface, comparing pure and imprinted textile fabrics. Therefore, thermoplastic polyurethane (TPU) was 3D printed in different patterns on diverse textile fabrics. Our study shows that for a sufficient adhesion, reached by small enough nozzle-fabric distance, elastic 3D printed patterns can indeed improve the surface resistance against wear.


Author(s):  
M.A. SEREZHKIN ◽  
D.O. KLIMYUK ◽  
A.I. PLOKHIKH

The article presents the study of the application of 3D printing technology for rapid tooling in sheet metal forming for custom or small–lot manufacturing. The main issue of the usage of 3D printing technology for die tooling was discovered. It is proposed to use the method of mathematical modelling to investigate how the printing parameters affect the compressive strength of FDM 3D–printed parts. Using expert research methods, the printing parameters most strongly affecting the strength of products were identified for further experiments. A method for testing the strength of 3D–printed materials has been developed and tested.


2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


2018 ◽  
Vol 24 (8) ◽  
pp. 1337-1346 ◽  
Author(s):  
Marzio Grasso ◽  
Lyes Azzouz ◽  
Paula Ruiz-Hincapie ◽  
Mauro Zarrelli ◽  
Guogang Ren

Purpose Recent advancements of 3D printing technology have brought forward the interest for this technique in many engineering fields. This study aims to focus on mechanical properties of the polylactic acid (PLA) feeding material under different thermal conditions for a typical fusion deposition of 3D printer system. Design/methodology/approach Specimens were tested under static loading within the range 20ºC to 60ºC considering different infill orientations. The combined effect of temperature and filament orientation is investigated in terms of constitutive material parameters and final failure mechanisms. The difference between feeding system before and post-3D printing was also assessed by mechanical test on feeding filament to verify the thermal profile during the deposition phase. Findings The results in terms of Young’s modulus, ultimate tensile strength (UTS), strain at failure (εf) and stress at failure (σf) are presented and discussed to study the influence of process settings over the final deposited material. Fracture surfaces have been investigated using an optical microscope to link the phenomenological interpretation of the failure with the micro-mechanical behaviour. Experimental results show a strong correlation between stiffness and strength with the infill orientation and the temperature values. Moreover, a relevant effect is related to deformed geometry of the filament approaching glass transition region of the polymer according to the deposition orientation. Research limitations/implications The developed method can be applied to optimise the stiffness and strength of any 3D-printed composite according to the infill orientation. Practical implications To avoid the failure of specimens outside the gauge length, a previously proposed modification to the geometry was adopted. The geometry has a parabolic profile with a curvature of 1,000 mm tangent to the middle part of the specimen. Originality/value Several authors have reported the stiffness and strength of 3D-printed parts under static and ambient temperature for different build parameters. However, there is a lack of literature on the combination of the latter with the temperature effects on the mechanical properties which this paper covers.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4544
Author(s):  
Osman Konuray ◽  
Arnau Sola ◽  
Jordi Bonada ◽  
Agnieszka Tercjak ◽  
Albert Fabregat-Sanjuan ◽  
...  

Versatile acrylate–epoxy hybrid formulations are becoming widespread in photo/thermal dual-processing scenarios, especially in 3D printing applications. Usually, parts are printed in a stereolithography or digital light processing (DLP) 3D printer, after which a thermal treatment would bestow the final material with superior mechanical properties. We report the successful formulation of such a hybrid system, consisting of a commercial 3D printing acrylate resin modified by an epoxy–anhydride mixture. In the final polymeric network, we observed segregation of an epoxy-rich phase as nano-domains, similar to what was observed in a previous work. However, in the current work, we show the effectiveness of a coupling agent added to the formulation to mitigate this segregation for when such phase separation is undesired. The hybrid materials showed significant improvement of Young’s modulus over the neat acrylate. Once the flexible, partially-cured material was printed with a minimal number of layers, it could be molded into a complex form and thermally cured. Temporary shapes were readily programmable on this final material, with easy shape recovery under mild temperatures. Inspired by repairable 3D printed materials described recently, we manufactured a large object by printing its two halves, and then joined them covalently at the thermal cure stage with an apparently seamless union.


2021 ◽  
Vol 105 (1) ◽  
pp. 431-440
Author(s):  
Pavel Šafl ◽  
Jana Zimáková ◽  
Tomáš Binar

The aim of this work is to study the climatic influences on 3D printed materials. This study focuses on the HIPS material, which was chosen as the starting material for further studies. The material in the field of 3D printing is known for its rapid photooxidation, which results in the formation of cracks in the final product. A climatic chamber was used for degradation, in which UV light, heat and increased humidity were applied to the material. The degree of degradation was then checked by tensile test and electron microscope.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramesh Chand ◽  
Vishal S. Sharma ◽  
Rajeev Trehan ◽  
Munish Kumar Gupta

Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.


Author(s):  
Xuefeng Zhu ◽  
Longkun Xu ◽  
Xiaochen Liu ◽  
Jinting Xu ◽  
Ping Hu ◽  
...  

Kagome honeycomb structure is proved to incorporate excellent mechanical and actuation performances due to its special configuration. However, until now, the mechanical properties of 3D printed Kagome honeycomb have not been investigated. Hence, the objective of this work is to explore some mechanical properties of 3D-printed Kagome honeycomb structures such as elastic properties, buckling, and so on. In this paper, the analytical formulas of some mechanical properties of Kagome honeycombs made of 3D-printed materials are given. Effective elastic moduli such as Young's modulus, shear modulus, and Poisson's ratio of orthotropic Kagome honeycombs under in-plane compression and shear are derived in analytical forms. By these formulas, we investigate the relationship of the elastic moduli, the relative density, and the shape anisotropy–ratio of 3D-printed Kagome honeycomb. By the uniaxial tensile testing, the effective Young's moduli of 3D printed materials in the lateral and longitudinal directions are obtained. Then, by the analytical formulas and the experimental results, we can predict the maximum Young's moduli and the maximum shear modulus of 3D-printed Kagome honeycombs. The isotropic behavior of 3D-printed Kagome honeycombs is investigated. We also derived the equations of the initial yield strength surfaces and the buckling surfaces. We found that the sizes of the buckling surfaces of 3D printed material are smaller than that of isotropic material. The efficiency of the presented analytical formulas is verified through the tensile testing of 3D printed Kagome honeycomb specimens.


2020 ◽  
Vol 26 (8) ◽  
pp. 1337-1344 ◽  
Author(s):  
Prashant Jindal ◽  
Mamta Juneja ◽  
Divya Bajaj ◽  
Francesco Luke Siena ◽  
Philip Breedon

Purpose 3D printing techniques have been widely used for manufacturing complex parts for various dental applications. For achieving suitable mechanical strength, post-cure processing is necessary, where the relative time duration and temperature specification also needs to be defined. The purpose of this study/paper is to assess the effects of post curing conditions and mechanical properties of 3D printed clear dental aligners Design/methodology/approach Dental long-term clear resin material has been used for 3D printing of dental aligners using a Formlabs 3D printer for direct usage on patients. Post-curing conditions have been varied, all of which have been subjected to mechanical compression loading of 1,000 N to evaluate the curing effects on the mechanical strength of the aligners. Findings The experimental studies provide significant insight into both temperatures and time durations that could provide sufficient compressive mechanical strength to the 3D printed clear dental aligners. It was observed that uncured aligners deformed plastically with large deformations under the loading conditions, whereas aligners cured between 400°C–800°C for 15–20 min deformed elastically before fragmenting into pieces after safely sustaining higher compressive loads between 495 N and 666 N. The compressive modulus ratio for cured aligners ranged between 4.46 and 5.90 as compared to uncured aligners. For shorter cure time durations and lower temperature conditions, an appropriate elevated compressive strength was also achieved. Originality/value Based on initial assessments by dental surgeons, suitable customised clear aligners can be designed, printed and cured to the desired levels based on patient’s requirements. This could result in time, energy and unit production cost savings, which ultimately would help to alleviate the financial burden placed on both the health service and their patients.


Sign in / Sign up

Export Citation Format

Share Document