Effect of the Binder on Properties of Molten Core and Co-Debinding Behavior in Silica-Based Ceramics

2021 ◽  
Vol 1035 ◽  
pp. 732-738
Author(s):  
Yuan Si ◽  
Peng Zhang

The effects of molecular weight of the binder on the properties of molten cores were studied The results showed that the filling parameter had an inverse correlation to molecular weight and was consistent with the Market-Houwink Equation. The surface roughness of the cavity surface deteriorated from 2.468 μm to 11.998 μm as the molecular weight of the binder climbed from 2000 to 6000 due to the presence of residual carbon, which was confirmed by SEM and EDS results. At the debinding stage, the pores that occurred in the ceramic core, were insufficient for the liquid PEG binder to flow out, some of the liquid binder moved to the fringe side. More pores formed as the temperature increased and the rest of the binder flowed out through this channel to flow to the filler. Some of the higher molecular weight PEG binder remained as it could not flow away completely and became residual carbon in the cavity surface.

InCIEC 2014 ◽  
2015 ◽  
pp. 927-935 ◽  
Author(s):  
Muhammad Rafi Raza ◽  
Faiz Ahmad ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
M. A. Omar ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
pp. 493-500
Author(s):  
Laiyu Zhu ◽  
Liping Min ◽  
Xianglin Li ◽  
Zhanyu Zhai ◽  
Dietmar Drummer ◽  
...  

Abstract Generally, the strength at the weld line of the injection molded part is very weak. The heat transfer coefficient (HTC) between the polymer melt and the mold cavity surface was analyzed to solve this problem. The surface roughness of the mold cavity and the material of the mold insert were changed to adjust the interface environment between the polymer melt and the mold cavity surface. HTC was obtained by combing the experimental measurement with the theoretical calculation. In the current study, the influence of HTC on the tensile strength of the weld line of the molded specimen was investigated. The results show that the weld line strength of the molded specimen increases with the decrease in HTC between the polymer and the mold cavity surface. Meanwhile, the decrease in the surface roughness of the mold cavity or replacing the mold material with lower thermal conductivity can reduce the value of the HTC between the polymer and the mold effectively and can delay the cooling rate of the hot polymer melt. This provides a new idea to solve thin-wall injection molding weld line defects.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1411 ◽  
Author(s):  
Martin Cvek ◽  
Miroslav Mrlik ◽  
Jakub Sevcik ◽  
Michal Sedlacik

A novel concept based on advanced particle-grafting technology to tailor performance, damping, and surface properties of the magnetorheological elastomers (MREs) is introduced. In this work, the carbonyl iron (CI) particles grafted with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) of two different molecular weights were prepared via surface-initiated atom transfer radical polymerization and the relations between the PHEMATMS chain lengths and the MREs properties were investigated. The results show that the magnetorheological performance and damping capability were remarkably influenced by different interaction between polydimethylsiloxane chains as a matrix and PHEMATMS grafts due to their different length. The MRE containing CI grafted with PHEMATMS of higher molecular weight exhibited a greater plasticizing effect and hence both a higher relative magnetorheological effect and enhanced damping capability were observed. Besides bulk MRE properties, the PHEMATMS modifications influenced also field-induced surface activity of the MRE sheets, which manifested as notable changes in surface roughness.


Author(s):  
Xincong Zhou ◽  
Alison L Galvin ◽  
Zhongmin Jin ◽  
Xinping Yan ◽  
J Fisher

The aims of this study were to investigate how the dimples on a metallic counterface affect the wear rate of ultra-high molecular weight polyethylene (UHMWPE) in a multi-directional reciprocating pin-on-plate machine. The plates were high nitrogen stainless steel, representing the femoral head material. The pins used in this study were of ultra-high molecular weight polyethylene GUR 1120, which represents the material used in an acetabular cup. Three different cases were investigated: a smooth surface without dimples as a reference case, a surface with medium dimples with an average valley of 2.3 µm and a surface with large dimples with an average valley of 5.9 µm. It was found that all the dimples investigated did not improve the lubrication, but instead increased the surface roughness; consequently, the wear of UHWMPE was slightly increased.


2007 ◽  
Vol 22 (3) ◽  
pp. 777-787 ◽  
Author(s):  
Hyun-Goo Kang ◽  
Hyung-Soon Park ◽  
Ungyu Paik ◽  
Jea-Gun Park

The effects of the molecular weight and concentration of poly(acrylic acid) (PAA) with different primary abrasive sizes in ceria slurry on the nitride film loss, removal rate, film surface roughness, and removal selectivity of SiO2-to-Si3N4 films were investigated by performing chemical mechanical polishing (CMP) experiments using blanket and patterned wafers. In the case of the blanket wafers, we found that for a lower PAA molecular weight, the removal selectivity of SiO2-to-Si3N4 films increased more significantly with increasing PAA concentration in slurry containing a larger primary abrasive size. For the patterned wafers, with a higher PAA molecular weight in the ceria slurry suspension, the erosion of the Si3N4 film was less, but the removed amount was also smaller, and the surface roughness became worse after CMP. These results can be qualitatively explained by the layer of PAA adsorbed on the film surface, in terms of electrostatic interaction and rheological behavior.


1970 ◽  
Vol 10 (01) ◽  
pp. 17-24 ◽  
Author(s):  
Charles C. Patton ◽  
Burton M. Casad

Abstract Paraffin deposition from several relined wax-solvent systems was studied by using a coldspot test apparatus The purpose of the investigation was to determine the effect of surface roughness, plastic coatings and solution composition on the plastic coatings and solution composition on the amount of deposition. No correlation was observed between surface roughness and deposit weight. The wax composition determined whether or not a given deposit remained on a given surface. Normal paraffin waxes of lower molecular weight formed paraffin waxes of lower molecular weight formed deposits that sloughed or slid off smooth steel or plastic coated surfaces and flaked off roughened plastic coated surfaces and flaked off roughened steel or plastic coated surfaces. Wax of a higher molecular weight, containing more microcrystalline material, formed deposits that did not slide or flake off either smooth or roughened steel or plastic coated surfaces. Plastic coatings decreased deposit weights by 30 percent or more for the higher molecular weight wax due to thermal insulation. Deposit weight decreased with stirring rate and increased with time and temperature differential. Introduction Why paraffin adheres to a surface has long been a point of discussion. Two theories that have evolved are summarized as follows. WETTABILITY OR FREE SURFACE ENERGY "As paraffin is deposited on a surface, it is held in place by adsorption forces. These adsorption forces are dependent upon the bee surface energy possessed by both the paraffin and the surface. As possessed by both the paraffin and the surface. As the free surface energy of the plate or surface is reduced, a resultant decrease in the adsorption force holding the paraffin to the plate or surface takes place. This causes a decrease in the amount of paraffin which can be retained on the plate surface for the flow conditions present." SURFACE ROUGHNESS "The results obtained in this investigation indicate that wax does not adhere to the pipe wall but is held in place by surface roughness and/or irregularities. As a wax particle grows along the pipe wall and out into the oil stream, the force pipe wall and out into the oil stream, the force tending to move it out of the tubing would increase. The smoother the surface, the more easily the embryonic deposit would be removed from the surface… Thus, it is concluded that wax does not adhere to steel but that deposits which form on steel surfaces are held in place by surface roughness." Or stated more concisely, "Paraffin deposition on metallic or nonparaffinic plastic surfaces at a given temperature is governed by surface roughness." The purpose of this investigation was to determine the effect of surface roughness, plastic coatings and solution composition on paraffin deposition from refined wax-solvent systems. Transparent refined systems were used so that the process could be studied visually. A cold spot test apparatus similar to that used by Hunt and Jorda was used. EXPERIMENTAL DESCRIPTION OF APPARATUS The deposition tests were carried out and a coldspot tester shown in Fig. 1. This apparatus consists of a double-walled glass test cell, cell lid, cold-spot probe, magnetic stirrer and two constant temperature water circulation systems. The probe face plate temperature was measured throughout each test with a 1/16-in. OD thermocouple that was inserted through the edge of the plate so that the thermocouple bead was positioned at its center. The thermocouple used was a shielded iron-constantan couple with a floating bead. A thermometer was used to measure solution temperature. SPEJ P. 17


Sign in / Sign up

Export Citation Format

Share Document