Structural Changes in Concrete under the Influence of Reactor Spectrum Neutrons

2021 ◽  
Vol 1037 ◽  
pp. 663-668
Author(s):  
Maria A. Frolova ◽  
Sergey D. Strekalov ◽  
Sergey S. Bezotosny ◽  
Pavel A. Ponomarenko

The paper considers structural changes in the concrete composition that occur under the influence of neutrons of the reactor spectrum, using the example of the IR-100 research nuclear reactor, taking into account its real time and operating conditions. Thus, taking into account the energy output, power operation modes, and neutron flux density in the core, over time, nuclides that are not characteristic of the original composition of the concrete component are formed in the nodes of the crystal lattice. However, these changes do not lead to significant structural changes.

2020 ◽  
Vol 92 (1) ◽  
pp. 378-387
Author(s):  
Omar E. Marcillo ◽  
Monica Maceira ◽  
Chengping Chai ◽  
Christine Gammans ◽  
Riley Hunley ◽  
...  

Abstract We describe the seismoacoustic wavefield recorded outdoors but inside the facility fence of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (Tennessee). HFIR is a research nuclear reactor that generates neutrons for scattering, irradiation research, and isotope production. This reactor operates at a nominal power of 85 MW, with a full-power period between 24 and 26 days. This study uses data from a single seismoacoustic station that operated for 60 days and sampled a full operating reactor cycle, that is, full-power operation and end-of-cycle outage. The analysis presented here is based on identifying signals that characterize the steady, that is, full-power operation and end-of-cycle outage, and transitional, that is, start-up and shutdown, states of the reactor. We found that the overall seismoacoustic energy closely follows the main power cycle of the reactor and identified spectral regions excited by specific reactor operational conditions. In particular, we identified a tonal noise sequence with a fundamental frequency around 21.4 Hz and multiple harmonics that emerge as the reactor reaches 90% of nominal power in both seismic and acoustic channels. We also utilized temperature measurements from the monitoring system of the reactor to suggest links between the operation of reactor’s subsystems and seismoacoustic signals. We demonstrate that seismoacoustic monitoring of an industrial facility can identify and track some industrial processes and detect events related to operations that involve energy transport.


Author(s):  
Mostafa Ahmed ◽  
Ibrahim Harbi ◽  
Ralph Kennel ◽  
Mohamed Abdelrahem

AbstractPhotovoltaic (PV) power systems are integrated with high penetration levels into the grid. This in turn encourages several modifications for grid codes to sustain grid stability and resilience. Recently, constant power management and regulation is a very common approach, which is used to limit the PV power production. Thus, this article proposes dual-mode power generation algorithm for grid-connected PV systems. The developed system considers the two-stage PV configuration for implementation, where the dual-mode power generation technique is executed within the DC–DC conversion (boost) stage. Most of the techniques adopted for dual-mode power operation employ the conventional perturb and observe method, which is known with unsatisfactory performance at fast-changing atmospheric conditions. Considering this issue, this study suggests a modified maximum power point tracker for power extraction. Furthermore, a new adaptive DC-link controller is developed to improve the DC-link voltage profile at different operating conditions. The adaptive DC-link controller is compared with the traditional PI controller for voltage regulation. The inverter control is accomplished using finite-set model predictive control with two control objectives, namely reference current tracking and switching frequency minimization. The overall control methodology is evaluated at different atmospheric and operating conditions using MATLAB/Simulink software.


1975 ◽  
Vol 39 (1) ◽  
pp. 579-582
Author(s):  
V. I. Zelenov ◽  
S. G. Karpechko ◽  
A. D. Nikiforov

Author(s):  
Charles Forsberg

A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900°C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300°C—the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Coraline Stasser ◽  
Guy Terwagne ◽  
Jacob Lamblin ◽  
Olivier Méplan ◽  
Guillaume Pignol ◽  
...  

AbstractMURMUR is a new passing-through-walls neutron experiment designed to constrain neutron-hidden neutron transitions allowed in the context of braneworld scenarios or mirror matter models. A nuclear reactor can act as a source of hidden neutrons, such that neutrons travel through a hidden world or sector. Hidden neutrons can propagate out of the nuclear core and far beyond the biological shielding. However, hidden neutrons can weakly interact with usual matter, making possible for their detection in the context of low-noise measurements. In the present work, the novelty rests on a better background discrimination and the use of a mass of a material – here lead – able to enhance regeneration of hidden neutrons into visible ones to improve detection. The input of this new setup is studied using both modelizations and experiments, thanks to tests currently performed with the experiment at the BR2 research nuclear reactor (SCK$$\cdot $$ · CEN, Mol, Belgium). A new limit on the neutron swapping probability p has been derived thanks to the measurements taken during the BR2 Cycle 02/2019A: $$p<4.0\times 10^{-10} \; \text {at 95}\%\text { CL}$$ p < 4.0 × 10 - 10 at 95 % CL . This constraint is better than the bound from the previous passing-through-wall neutron experiment made at ILL in 2015, despite BR2 is less efficient to generate hidden neutrons by a factor of 7.4, thus raising the interest of such experiment using regenerating materials.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


2020 ◽  
Vol 17 (2) ◽  
pp. 102-106
Author(s):  
O. V. Haidar ◽  
◽  
I. O. Pavlenko ◽  
O. V. Sviatun ◽  
O. V. Svarychevska ◽  
...  

ROTASI ◽  
2013 ◽  
Vol 15 (4) ◽  
pp. 33
Author(s):  
Anwar Ilmar Ramadhan ◽  
Indra Setiawan ◽  
M. Ivan Satryo

Safety is an issue that is of considerable concern in the design, operation and development of a nuclear reactor. Therefore, the method of analysis used in all these activities should be thorough and reliable so as to predict a wide range of operating conditions of the reactor, both under normal operating conditions and in the event of an accident. Performance of heat transfer to the cooling of nuclear fuel, reactor safety is key. Poor heat removal performance would threaten the integrity of the fuel cladding which could further impact on the release of radioactive substances into the environment in an uncontrolled manner to endanger the safety of the reactor workers, the general public, and the environment. This study has the objective is to know is profile contour of fluid flow and the temperature distribution pattern of the cooling fluid is water (H2O) in convection in to SMR reactor with fuel sub reed arrangement of hexagonal in forced convection. In this study will be conducted simulations on the SMR reactor core used sub channel hexagonal using CFD (Computational Fluid Dynamics) code. And the results of this simulation look more upward (vector of fluid flow) fluid temperature will be warm because the heat moves from the wall to the fluid heater. Axial direction and also looks more fluid away from the heating element temperature will be lower.


Sign in / Sign up

Export Citation Format

Share Document