Anomalously High Density of Interface States Near the Conduction Band in SiO2/4H-SiC MOS Devices

2000 ◽  
Vol 338-342 ◽  
pp. 1069-1072 ◽  
Author(s):  
Mrinal K. Das ◽  
Benjamin S. Um ◽  
James A. Cooper
2000 ◽  
Vol 640 ◽  
Author(s):  
Gerhard Pensl ◽  
Michael Bassler ◽  
Florin Ciobanu ◽  
Valeri Afanas'ev ◽  
Hiroshi Yano ◽  
...  

ABSTRACTThe density of interface states Dit at SiC/SiO2 interfaces of different SiC polytypes (4H-, 6H- and 15R-SiC) is monitored and the origin of these states is discussed. The hydrogenation behavior of interface states in the temperature range from 250°C to 1000°C is studied by C-V and G-V investigations. The strong increase of Dit close to the 4H-SiC conduction band is attributed to defects located in the oxide (so-called “Near Interface Traps”).


2012 ◽  
Vol 109 (10) ◽  
Author(s):  
A. Jain ◽  
J.-C. Rojas-Sanchez ◽  
M. Cubukcu ◽  
J. Peiro ◽  
J. C. Le Breton ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (86) ◽  
pp. 54911-54919 ◽  
Author(s):  
Varsha Rani ◽  
Akanksha Sharma ◽  
Pramod Kumar ◽  
Budhi Singh ◽  
Subhasis Ghosh

We investigate the charge transport mechanism in copper phthalocyanine thin films with and without traps. We find that the density of interface states at the grain boundaries can decide the mechanism of charge transport in organic thin films.


2011 ◽  
Vol 679-680 ◽  
pp. 334-337 ◽  
Author(s):  
Pétur Gordon Hermannsson ◽  
Einar Ö. Sveinbjörnsson

We report a strong reduction in the density of near-interface traps (NITs) at the SiO2/4H-SiC interface after dry oxidation in the presence of potassium. This is accompanied by a significant enhancement of the oxidation rate. The results are in line with recent investigations of the effect of sodium on oxidation of 4H-SiC. It is evident that both alkali metals enhance the oxidation rate of SiC and strongly influence the energy distribution of interface states.


2021 ◽  
Vol MA2021-02 (34) ◽  
pp. 993-993
Author(s):  
Suman Das ◽  
Tamara Isaacs-smith ◽  
Ayayi Ahyi ◽  
Marcelo Kuroda ◽  
Sarit Dhar
Keyword(s):  

1991 ◽  
Vol 70 (9) ◽  
pp. 4950-4957 ◽  
Author(s):  
Andrew J. Simons ◽  
Mohammed H. Tayarani‐Najaran ◽  
Clive B. Thomas

2016 ◽  
Vol 858 ◽  
pp. 437-440
Author(s):  
Munetaka Noguchi ◽  
Toshiaki Iwamatsu ◽  
Hiroyuki Amishiro ◽  
Hiroshi Watanabe ◽  
Shuhei Nakata ◽  
...  

The electrical characteristics of the SiC metal-oxide-semiconductor field effect transistor (MOSFET) have been limited by large amount of states at the SiO2/SiC interface. In this study, the accuracy of the energy level of the interface states extracted by hypothetical high frequency extreme, which is conventionally used, is experimentally examined. Conductance measurements at low temperature between 65 K and 100 K reveal that the extracted energy distribution of the interface states at nitrided SiO2/SiC interface close to the conduction band edge depends on the measurement temperature. It is demonstrated that conductance method at 65K enables us more accurate evaluation of the interface states at the SiO2/SiC interface and found that the interface states density (Dit) of nitride SiO2/SiC interface is over 1013 cm-2eV-1 at energy level of 0.1 eV below the conduction band edge.


2006 ◽  
Vol 527-529 ◽  
pp. 1071-1074 ◽  
Author(s):  
Carey M. Tanner ◽  
Jong Woo Choi ◽  
Jane P. Chang

The electronic properties of HfO2 films on 4H-SiC were investigated to determine their suitability as high-κ dielectrics in SiC power MOS devices. The band alignment at the HfO2/4HSiC interface was determined by X-ray photoelectron spectroscopy (XPS) and supported by density functional theory (DFT) calculations. For the experimental study, HfO2 films were deposited on ntype 4H-SiC by atomic layer deposition (ALD). XPS analysis yielded valence and conduction band offsets of 1.69 eV and 0.75 eV, respectively. DFT predictions based on two monoclinic HfO2/4HSiC (0001) structures agree well with this result. The small conduction band offset suggests the potential need for further interface engineering and/or a buffer layer to minimize electron injection into the gate oxide.


Sign in / Sign up

Export Citation Format

Share Document