Effect of nitridation on the density of interface states in W–Ti/n-GaAs Schottky diodes

Author(s):  
H. Chen
RSC Advances ◽  
2017 ◽  
Vol 7 (86) ◽  
pp. 54911-54919 ◽  
Author(s):  
Varsha Rani ◽  
Akanksha Sharma ◽  
Pramod Kumar ◽  
Budhi Singh ◽  
Subhasis Ghosh

We investigate the charge transport mechanism in copper phthalocyanine thin films with and without traps. We find that the density of interface states at the grain boundaries can decide the mechanism of charge transport in organic thin films.


2011 ◽  
Vol 679-680 ◽  
pp. 334-337 ◽  
Author(s):  
Pétur Gordon Hermannsson ◽  
Einar Ö. Sveinbjörnsson

We report a strong reduction in the density of near-interface traps (NITs) at the SiO2/4H-SiC interface after dry oxidation in the presence of potassium. This is accompanied by a significant enhancement of the oxidation rate. The results are in line with recent investigations of the effect of sodium on oxidation of 4H-SiC. It is evident that both alkali metals enhance the oxidation rate of SiC and strongly influence the energy distribution of interface states.


1991 ◽  
Vol 70 (9) ◽  
pp. 4950-4957 ◽  
Author(s):  
Andrew J. Simons ◽  
Mohammed H. Tayarani‐Najaran ◽  
Clive B. Thomas

1996 ◽  
Vol 427 ◽  
Author(s):  
S. Hara ◽  
T. Teraji ◽  
H. Okushi ◽  
K. Kajimura

AbstractWe propose a new systematical method to control Schottky barrier heights of metal/semiconductor interfaces by controlling the density of interface electronic states and the number of charges in the states. The density of interface states is controlled by changing the density of surface electronic states, which is controlled by surface hydrogenation and flattening the surface atomically. We apply establishing hydrogen termination techniques using a chemical solution, pH controlled buffered HF or hot water. Also, slow oxidation by oxygen gas was used to flatten resultant semiconductor surfaces. The density of interface charges is changeable by controlling a metal work function. When the density of surface states is reduced enough to unpin the Fermi level, the barrier height is determined simply by the difference between the work function of a metal φm and the flat-band semiconductor ØsFB. In such an interface with the low density of interface states, an Ohmic contact with a zero barrier height is formed when we select a metal with φm < φsFB. We have already demonstrated controlling Schottky and Ohmic properties by changing the pinning degree on silicon carbide (0001) surfaces. Further, on an atomically-flat Si(111) surface with monohydride termination, we have observed the lowering of an Al barrier height.


Sign in / Sign up

Export Citation Format

Share Document