Fabrication of Oxide/Semiconducting Coaxial Nanotubular Materials Using Atomic Layer Deposition

2004 ◽  
Vol 449-452 ◽  
pp. 1165-1168 ◽  
Author(s):  
D.K. Jeong ◽  
N.H. Park ◽  
S.-H. Jung ◽  
Woo Gwang Jung ◽  
H. Shin ◽  
...  

Novel fabrication routes of oxide/semiconducting hybrid nanotubes or coaxial nanocables with 30~200 nanometers of radius and ~10 micrometers of length using atomic layer deposition (ALD) and soluble nano-templates was reported. In order to fabricate the hybrid nanotubes using nanotemplates, which were treated with surface modification using SAMs in order to achieve selective deposition only onto inner wall of the template. Deposition of metal oxide layers (TiO2, ZrO2) conformally and uniformly onto the wall of templates using ALD. To fabricate metal oxide/CdS nanocables or coaxial nanotubes, CdS was deposited onto metal oxide nanotubes by chemical bath deposition. Coaxial nanocables was also 30-200 nm in diameter and 1-10 in lengths.

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1298
Author(s):  
Xiaofeng Wang ◽  
Zhe Zhao ◽  
Chengcheng Zhang ◽  
Qingbo Li ◽  
Xinhua Liang

In recent years, atomic layer deposition (ALD) is widely used for surface modification of materials to improve the catalytic performance for removing pollutants, e.g., CO, hydrocarbons, heavy metal ions, and organic pollutants, and much progress has been achieved. In this review, we summarize the recent development of ALD applications in environmental remediation from the perspective of surface modification approaches, including conformal coating, uniform particle deposition, and area-selective deposition. Through the ALD conformal coating, the activity of photocatalysts improved. Uniform particle deposition is used to prepare nanostructured catalysts via ALD for removal of air pollutions and dyes. Area-selective deposition is adopted to cover the specific defects on the surface of materials and synthesize bimetallic catalysts to remove CO and other contaminations. In addition, the design strategy of catalysts and shortcomings of current studies are discussed in each section. At last, this review points out some potential research trends and comes up with a few routes to further improve the performance of catalysts via ALD surface modification and deeper investigate the ALD reaction mechanisms.


2010 ◽  
Vol 107 (10) ◽  
pp. 106104 ◽  
Author(s):  
D. Gregušová ◽  
R. Stoklas ◽  
Ch. Mizue ◽  
Y. Hori ◽  
J. Novák ◽  
...  

2021 ◽  
Author(s):  
Seunghwan Lee ◽  
GeonHo Baek ◽  
Hye-mi Kim ◽  
Yong-Hwan Kim ◽  
Jin-Seong Park

Metalcone films can be rearranged from amorphous structures to 2D-like carbon by electron beam irradiation. The irradiated indicone (HQ) film can be used as an inhibitor for selective deposition delaying 20 cycles of ALD of ZnO.


Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
César Masse de la Huerta ◽  
Viet Nguyen ◽  
Jean-Marc Dedulle ◽  
Daniel Bellet ◽  
Carmen Jiménez ◽  
...  

Within the materials deposition techniques, Spatial Atomic Layer Deposition (SALD) is gaining momentum since it is a high throughput and low-cost alternative to conventional atomic layer deposition (ALD). SALD relies on a physical separation (rather than temporal separation, as is the case in conventional ALD) of gas-diluted reactants over the surface of the substrate by a region containing an inert gas. Thus, fluid dynamics play a role in SALD since precursor intermixing must be avoided in order to have surface-limited reactions leading to ALD growth, as opposed to chemical vapor deposition growth (CVD). Fluid dynamics in SALD mainly depends on the geometry of the reactor and its components. To quantify and understand the parameters that may influence the deposition of films in SALD, the present contribution describes a Computational Fluid Dynamics simulation that was coupled, using Comsol Multiphysics®, with concentration diffusion and temperature-based surface chemical reactions to evaluate how different parameters influence precursor spatial separation. In particular, we have used the simulation of a close-proximity SALD reactor based on an injector manifold head. We show the effect of certain parameters in our system on the efficiency of the gas separation. Our results show that the injector head-substrate distance (also called deposition gap) needs to be carefully adjusted to prevent precursor intermixing and thus CVD growth. We also demonstrate that hindered flow due to a non-efficient evacuation of the flows through the head leads to precursor intermixing. Finally, we show that precursor intermixing can be used to perform area-selective deposition.


2011 ◽  
Vol 11 (8) ◽  
pp. 7322-7326 ◽  
Author(s):  
Hyun Ae Lee ◽  
Young-Chul Byun ◽  
Umesh Singh ◽  
Hyoung J. Cho ◽  
Hyoungsub Kim

Sign in / Sign up

Export Citation Format

Share Document