The Investigation of Microstructure of Pt/Ti Explosive Clad Interface

2005 ◽  
Vol 475-479 ◽  
pp. 3855-3858 ◽  
Author(s):  
Shi Zhong Wei ◽  
Yan Li ◽  
Jin Hua Zhu

Microstructure in anchoring site of Pt/Ti explosive clad Plate was observed, tested and analyzed by analytical and high resolution transmission electron microscope, X-ray diffractometer, scanning electron microscope and energy-dispersive spectrometer. An intermittent micro-crystal layer was observed in anchoring area, with thickness of 2 um. The inner crystal size was from some nanometer. to hundreds of nanometer. Some crystal had defects in it, such as staggered layer. The layer was composed of metal compound, like PtTi,Pt5Ti3,Pt3Ti,Ti3Pt and etc. The direct Pt—Ti anchoring area, hexagonal Ti variation-orthorhombic crystal system, α″-Ti metastable martensite phase and bicrystals with partial deformation were also observed. The research of microstructure in anchoring area revealed the nature of explosive compound in metallurgical anchoring.

2008 ◽  
Vol 368-372 ◽  
pp. 1614-1617
Author(s):  
Yan Li ◽  
Shi Zhong Wei ◽  
Jian Ping Gao ◽  
Wan Hong Zhang ◽  
Rui Long

Microstructure in anchoring site of TiC cermets/steel explosive cladding plate was analyzed by transmission electron microscope (TEM), scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS). An intermittent micro-crystal layer, with thickness of about 10μm, was observed in anchoring area. The inner crystal size was in range of some nanometer to hundreds of nanometer. The phases of the layer are mainly austenite, ferrite, and some titanium carbide. A flow layer was observed in the area near the steel side. The diffusion of Ti is the most apparent and the diffusion length is about 15μm. The observation of the microstructure in anchoring area revealed the nature of explosive compound in metallurgical anchoring.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2011 ◽  
Vol 295-297 ◽  
pp. 869-872
Author(s):  
Qing Shan Li ◽  
Xin Wang ◽  
Jun Liu ◽  
Guang Zhong Xing

Six-ring Rock is widely used as containers of water and additives to produce health care products. In this paper, the composition and microstructure of Six-ring Rock have been investigated by using scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, x-ray diffraction and other technologies. Results show that Six-ring Rock is composed of CaMg(CO3)2, SiO2 and KAlSi3O8. Fe atoms exist in CaMg(CO3)2 by replacing Mg atoms. Six-ring Rock shows nano-size lamellar and acerose microstructures on the surface, and nano-size monocrystals in the body. Six-ring Rock is a natural nano structure mineral.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2011 ◽  
Vol 8 (3) ◽  
pp. 1014-1021 ◽  
Author(s):  
Ezekiel Dixon Dikio

The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope(FE-SEM), Energy Dispersive x-ray Spectroscopy(EDS), Raman spectroscopy, Thermogravimetric Analysis(TGA)and Transmission Electron Microscope(TEM). A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.


2011 ◽  
Vol 675-677 ◽  
pp. 835-838
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Hong Cheng

The present work reported the preparation of TiC/Fe-based composite by the synthesis reaction from Ti, C and Fe. The sintered composites were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. TiC, Fe3C and α-Fe were detected by X-ray diffraction analysis. The scanning and transmission electron micrographs revealed the morphology and distribution of the reinforcements, the microstructure of Fe matrix, the interfacial structure of TiC particle-to-Fe matrix. Moreover, the formation reason of the voids in composite was also discussed.


2013 ◽  
Vol 319 ◽  
pp. 43-48 ◽  
Author(s):  
Hong Di Zhang ◽  
Chen Hao Sheng ◽  
Bin Sun ◽  
Yun Ze Long

Nanocrystalline and porous barium titanate (BaTiO3) nanofibers with diameter 200-400 nm were synthesized via electrospinning and followed calcinations. The morphology and microstructure of the nanofibers were characterized using field emission scanning electron microscope, X-ray diffractometer and transmission electron microscope, respectively. And the electrical and humidity sensing properties of the nanofibers were also measured. The results reveal that the BaTiO3 nanofibers have a conductivity of about 0.3 S/cm, and show an ultrafast response time (~0.7 s) and a recovery time (~0.4 s) to humidity at room temperature. In addition, the sensing mechanism was also discussed briefly based on its nanocrystalline and porous microstructure of the electrospun material.


Author(s):  
A.G. Fitzgerald ◽  
S.M. Potrous

The diffusion of silver in amorphous chalcogenides is the basis for high-resolution lithographic applications. Previous studies of the diffusion of silver on contact with chalcogenide films has been studied by Auger depth profiling and the effects of photodoping on chemical bonding have been studied by x-ray photoelectron spectroscopy. Electron lithographic effects have been studied in the transmission electron microscope.The objective of the investigation described here has been to determine the degree of diffusion of silver in the amorphous chalcogenides, As2S3, As2Se3, GeS and GeSe when these films are in contact with thin silver films. The silver distribution has been determined by x-ray microanalysis of film cross-sections in the scanning electron microscope (SEM). Electron beam induced conductivity (EBIC) at points in these films has also been investigated.


2021 ◽  
Author(s):  
SongSik Pak ◽  
KwangChol Ri ◽  
Chenmin Xu ◽  
Qiuyi Ji ◽  
Dunyu Sun ◽  
...  

The g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts were successfully synthesized. The powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscope, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used for...


2013 ◽  
Vol 328 ◽  
pp. 674-678
Author(s):  
Xiao Juan Jiang ◽  
Guo Qiang Luo ◽  
Mei Juan Li ◽  
Qiang Shen ◽  
Lian Meng Zhang

The RGO/Ag nanocomposite with a homogeneous dispersion of Ag on the surface of RGO has been successfully prepared via situ chemical reduction method using DMF (dimethylformamide) as solvent and reducing agent. The RGO/Ag nanocomposite was characterized by X-ray diffractometer (XRD), Fourier transform-infrared (FTIR) spectra, Fieldemission scanning electron microscope (FESEM) and transmission electron microscope (TEM). It is suggested that in the presence of the PVP (polyvinylpyrrolidone), the electrostatic attraction of Ag+ions with negative GO sheets lead to the decoration of Ag nanoparticles on the surface of RGO sheets in RGO/Ag nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document