Synthesis of SiC Ceramics from Coal Gangue

2005 ◽  
Vol 486-487 ◽  
pp. 378-381 ◽  
Author(s):  
Shu Hai Jia

The synthesis and the sintering of SiC from coal gangue by carbothermal synthesized in N2 atmosphere are studied. The material, 5 percent carbon black added and sintered at 1400°C for 2 hours, had good properties and a bending strength of 137.8MPa. Too high temperature or too long holding time made the properties of the material to decrease. β-SiC found by observing the microstructure is a major crystal phase in the synthesized ceramics, which would lead to fine mechanical properties.

2010 ◽  
Vol 434-435 ◽  
pp. 185-188 ◽  
Author(s):  
Xin Sun ◽  
Xing Hong Zhang ◽  
Zhi Wang ◽  
Wen Bo Han ◽  
Chang Qing Hong

Abstract. ZrB2-SiC ultra-high temperature ceramics (UHTCs) was hot-pressed at a temperature of 1900°C with the addition of carbon black as a reinforcing phase. Microstructure and mechanical properties were investigated. Analysis revealed that the amount of carbon black had a significant influence on the sinterability and mechanical properties of ZrB2-SiC ceramics. When a small amount ( < 10 vol.%) of carbon black was introduced, it may react with oxide impurities (i.e. ZrO2, B2O3 and SiO2) present on the surface of the starting powder, thus promote the densification and grain refining of ZrB2-SiC ceramics. As a result, the mechanical properties including flexural strength and fracture toughness were improved. However, with the further adoption of carbon black, mechanical properties were not improved much, which could be attributed to the redundant phase at grain boundaries. The results presented here point to a potential method for improving densification, microstructure and mechanical properties of ZrB2-based ceramic composites.


2003 ◽  
Vol 11 (6) ◽  
pp. 477-485 ◽  
Author(s):  
Shifeng Wang ◽  
Yong Zhang ◽  
Yinxi Zhang

Styrene-butadiene-styrene tri-block copolymer (SBS) modified asphalts are usually unstable during high-temperature storage, which presents an obstacle to their application. In this paper, SBS modified asphalts with improved high-temperature storage stability were prepared by incorporating carbon black (CB) into the SBS compounds. The effect of CB on the high-temperature storage properties, dynamic rheology, mechanical properties (softening point, viscosity etc.) and the morphologies of the modified asphalts were studied. It was found that the ratio of SBS to CB in the compound had a great effect on the high-temperature storage behavior. The modified asphalts were stable when the ratio of SBS/CB was around 2. CB had almost no effect on the dynamic rheology or the mechanical properties of the modified asphalts. The improvement in high-temperature storage behavior could be caused by decreasing the density difference and improving the compatibility between SBS and asphalt.


2012 ◽  
Vol 32 (10) ◽  
pp. 2519-2527 ◽  
Author(s):  
Ji Zou ◽  
Guo-Jun Zhang ◽  
Chun-Feng Hu ◽  
Toshiyuki Nishimura ◽  
Yoshio Sakka ◽  
...  

2014 ◽  
Vol 716-717 ◽  
pp. 70-73
Author(s):  
Yue Qiong Wang ◽  
Zheng Peng ◽  
Jie Ping Zhong ◽  
Kui Xu ◽  
Chang Jin Yang ◽  
...  

Natural rubber (NR)/epoxidized natural rubber (ENR)/carbon black (CB), natural rubber/butadiene rubber (BR)/carbon black and natural rubber/isobutylene-isoprene rubber (IIR)/carbon black compounds were prepared by mechanical mixing method. The mechanical properties, dynamic mechanical properties for the compounds were investigated respectively. The temperature range of tanδ>0.3 of NR/ENR40/CB compound was wider and shifted to high temperature than NR/CB compound. Comprehensive analysis indicated that NR/BR/CB and NR/IIR/CB compounds had no better damping performance than NR/CB compounds, while NR/ENR/CB compound had better damping performance.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 313 ◽  
Author(s):  
Xiaoyang Wang ◽  
Hongqiang Ru

Cu–Fe-based friction materials with flake graphite, granulated carbon black, and high-strength graphite as lubricating phase were prepared by the powder metallurgy method. The effects of different types and mass fraction of lubricating phase on the microstructure, mechanical properties, and tribological properties were investigated. The results show that when the mass fraction of granulated carbon black is 5 wt%, it is easy to form a good interface with the matrix, but the interface is prone to pores and cracks when its mass fraction is 10 wt%. The bending strength and compressive strength properties of the composites increased with increasing in the mass fraction of granulated carbon black and reached the maximum of 40 MPa and 70 MPa at 5 wt% granulated carbon black, after which bending strength and compressive strength all decreased. The friction coefficient and the wear loss of the materials initially decreased as the mass fraction of granulated carbon black increased and obtained minimum of 0.436 and 0.145 mm when the mass fraction of granulated carbon black was 5 wt%, then ascended. Compared with the sample with 5 wt% high-strength graphite as lubricating phase, the sample with 5 wt% granulated carbon black as lubricating phase had better sintering performance, mechanical properties, and tribological properties.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3837 ◽  
Author(s):  
Li Qiao ◽  
Zhenhua Wang ◽  
Taiyi Lu ◽  
Juntang Yuan

The n-SiC (nanometer SiC) is added to be the additive in order to improve the mechanical performance of Si3N4 ceramics. A microwave sintered the ceramics at different temperature and holding times. The results shows that the Si3N4/n-SiC ceramics (85 wt% Si3N4 + 5 wt% n-SiC + 5 wt% Al2O3 + 5 wt% Y2O3) have the best mechanical properties at 1600 °C, which is beneficial to the densification and β-Si3N4 phase formation for 10 min: the density, hardness, and fracture toughness were 97.1%, 14.44 GPa, and 7.77 MPa·m1/2, which increased by 2.8%, 7.0%, and 13.1%, respectively, when compared with the ceramics (90 wt% Si3N4 + 5 wt% Al2O3 + 5 wt% Y2O3).


2020 ◽  
Vol 867 ◽  
pp. 172-181
Author(s):  
I Made Kastiawan ◽  
I Nyoman Sutantra ◽  
Sutikno

The impact of holding time and particle size of bottom ash on the mechanical properties of polypropylene composites has been investigated. The size of the used particle were 200-250, 250-300, and 300-350 mesh with the holding time variations were 0, 30, 60, and 90 minutes. The initial process of the bottom ash was cleaned with fresh and warm water, then drained and dried at a 120°C for 3 hours. In the making process of composites, the bottom ash was mixed into the polypropylene matrix by stirring at a speed of 20 rpm for 30 minutes. The results of this study showed that the highest composite strength values were obtained in composites with the particle size of 250-300 mesh. Tensile strength increased about 45% for composites without providing holding time (0 minutes), while the bending strength value increased significantly to 103% obtained on composites given a holding time of 30 minutes. The results of this study will be used as a basis for further research and hopes of getting better alternative engineering materials in the form of composites.


2007 ◽  
Vol 336-338 ◽  
pp. 1076-1079
Author(s):  
Chang Qing Hong ◽  
Jie Cai Han ◽  
Xing Hong Zhang ◽  
He Xin Zhang

Porous TiB2 ceramics with a three-dimensional interconnected skeleton were fabricated by high temperature pressureless sintering from fine TiB2 powders. The microstructure of the porous TiB2 ceramic was characterized by the enhanced neck growth between the initially touching particles. This neck growth was ascribed to the selective heating of TiB2 particles with different dimension. The porous structure prepared by the high-temperature sintering exhibited higher bending strength and fracture toughness in the present experiment. The improved mechanical properties of the sintered composites were attributable to the enhanced neck growth by surface diffusion.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 318
Author(s):  
Yajun Yu ◽  
An Du ◽  
Xue Zhao ◽  
Yongzhe Fan ◽  
Ruina Ma ◽  
...  

This paper proposes a simple reactive melt infiltration process to improve the mechanical properties of silicon carbide (SiC) ceramics. SiC matrix composites were infiltrated by Al–Si (10 wt.%)–xTi melts at 900 °C for 4 h. The effects of Ti addition on the microstructure and mechanical properties of the composites were investigated. The results showed that the three-point bending strength, fracture toughness (by single-edge notched beam test), and fracture toughness (by Vickers indentation method) of the SiC ceramics increased most by 34.3%, 48.5%, and 128.5%, respectively, following an infiltration with the Al–Si (10 wt.%)–Ti (15 wt.%) melt. A distinct white reaction layer mainly containing a Ti3Si(Al)C2 phase was formed on the surface of the composites infiltrated by Al alloys containing Ti. Ti–Al intermetallic compounds were scattered in the inner regions of the composites. With the increase in the Ti content (from 0 to 15 wt.%) in the Al alloy, the relative contents of Ti3Si(Al)C2 and Ti–Al intermetallic compounds increased. Compared with the fabricated composite infiltrated by an Al alloy without Ti, the fabricated composites infiltrated by Al alloys containing Ti showed improved overall mechanical properties owing to formation of higher relative content Ti3Si(Al)C2 phase and small amounts of Ti–Al intermetallic compounds.


Sign in / Sign up

Export Citation Format

Share Document