Effect of Substrate Temperature on Crystal Orientation and Residual Stress in RF Sputtered Gallium Nitride Films

2005 ◽  
Vol 490-491 ◽  
pp. 613-618 ◽  
Author(s):  
Kazuya Kusaka ◽  
Hanabusa Takao ◽  
Kikuo Tominaga ◽  
Noriyoshi Yamauchi

The crystal orientation and residual stress in gallium nitride (GaN) films deposited on a single-crystal (0001) sapphire substrate using a new sputtering system are examined through x-ray diffraction measurements as part of a study of low-temperature sputtering techniques for GaN. The new rf sputtering system has an isolated deposition chamber to prevent contamination with impurities, and is expected to produce high-purity nitride films. GaN films are deposited at various substrate temperatures and constant gas pressure and input power. This new system is found to produce GaN films with good crystal orientation, with the c-axes of GaN crystals oriented normal to the substrate surface. The crystal size of films deposited at high temperature is larger than that deposited at low Ts. All films except that deposited at 700oC exhibit compressive residual stress, and this residual stress is found to decrease with increasing temperature. Finally, the film deposited at 700 oC was tinged with white, and the surface contained numerous micro-cracks.

2010 ◽  
Vol 139-141 ◽  
pp. 269-273 ◽  
Author(s):  
Xiu Xu Zhao

Grinding is one of the important machining processes for the WC-Co carbide product. Different grinding strategies will have different impact on the work piece material. This study focuses on the WC-Co carbide grinding process, and the effect of grinding condition on the WC-Co carbide microstructure, figures out the relationship between different grinding strategies and material microstructure which relate to the WC-Co carbide tool failure. A specific microstructure analysis with Scanning Electric Microscope (SEM) will be presented based on a series of grinding experiments. The residual stress that generated in the grinding process will also be discussed based on the X-Ray Diffraction (XRD) measurements. It has been found that micro cracks are generated at certain grinding conditions with certain level. The residual stress which generated in the grinding process can be calculated by the d-spacing shift, and the comparison results show micro-cracks level is corresponding with the peaks shift in XRD test.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 651-653
Author(s):  
W. L. WANG ◽  
L. LI ◽  
K. J. LIAO ◽  
J. ZHANG ◽  
R. J. ZHANG ◽  
...  

The Magnetothermoelectric and thermoelectric power of nano- ZnO films was investigated. The ZnO films in this study were prepared by DC reactive sputtering using a Zn target (99.99%) containing AL of 1.5%. The films obtained were characterized by SEM, x-ray diffraction, optical and electrical measurements. It was found that the sputtering ZnO films were highly orientation growth with the c-axis perpendicular to the substrate surface. The measurements showed that there was a striking seebeck effect in the ZnO films, and their thermoelectric power was linearly increased with increasing temperature. The experimental results were also demonstrated that the thermoelectric power was degraded under the magnetic field. This finding may ascribe to the magneto resistive effect.


MRS Advances ◽  
2020 ◽  
Vol 5 (23-24) ◽  
pp. 1215-1223
Author(s):  
R.R. Phiri ◽  
O.P. Oladijo ◽  
E.T. Akinlabi

AbstractControl and manipulation of residual stresses in thin films is a key for attaining coatings with high mechanical and tribological performance. It is therefore imperative to have reliable residual stress measurements methods to further understand the dynamics involved. The sin2ψ method of X-ray diffraction was used to investigate the residual stresses on the tungsten carbide cobalt thin films deposited on a mild steel surface to understand the how the deposition parameters influence the generation of residual stresses within the substrate surface. X-ray spectra of the surface revealed an amorphous phase of the thin film therefore the stress measured was of the substrate surface and the effects of sputtering parameters on residual stress were analysed. Compressive stresses were identified within all samples studied. The results reveal that as the sputtering parameters are varied, the residual stresses also change. Optimum deposition parameters in terms of residual stresses were suggested.


2021 ◽  
Vol 406 ◽  
pp. 256-264
Author(s):  
Mohammed Mahdi ◽  
M. Kadri

First, the metallic oxides of PbO, TiO2 and ZrO2 were mixed following (2, 1, 1) molar mass respectively. Then 4 samples were separated (S1, S2, S3 and S4). the first one S1 was subjected to calcination treatments at 600, 700 and 800 °C however, the S2 was treated at 700 °C only, the S3 at 800 °C and S4 at 850 °C. The X ray diffraction of the samples reveals important difference in the phases obtained, at 600 °C the quadratic riche phase of PbTiO3 was mainly observed on sample S1, after the treatment at 700 °C and 800°C, the same XRD patterns were obtained with the same peaks positions and the relative intensity. However the S2 revels different pattern from S1 at 700 °C relative to the formation of the Pb(Zr0.75, Ti0.25)O3 Rhombohedral riche phase. The S3 XRD results reveal also different pattern from S1 at 800 °C relative to the formation of Pb (Zr0.58, Ti0.42) O3 near the Morphotropic phase boundary (MPB) and the S4 confirm these finding. Thin films grown from the S1 and S4 used as target in the RF sputtering system, show important difference in the PZT stoichiometry obtained which is relative to Pb (Zr0.44, Ti0.56) located in the quadratic riche phase and Pb (Zr0.52, Ti0.48) O3 near the MPB respectively.


2013 ◽  
Vol 341-342 ◽  
pp. 179-182
Author(s):  
Wei Xiang Liu

The surface of the nanostructured ceramic coatings after grinding appears cracks, these cracks will reduce components intensity, and the cause of these cracks is grinding surface residual stress. The surface residual stress makes the distance change regularly with crystal orientation and stress changing on the cognate crystal plane of different crystal grain, therefore the X ray diffraction line offset, according to the size of the offseted position, the residual stress can be calculated by using σ = K • M.


1997 ◽  
Vol 12 (7) ◽  
pp. 1850-1855 ◽  
Author(s):  
A. Rodríguez-Navarro ◽  
W. Otaño-Rivera ◽  
J. M. García-Ruiz ◽  
R. Messier ◽  
L. J. Pilione

The development of preferred orientation in AlN thin films deposited on silica glass substrates by rf sputtering at low substrate temperature (<150 °C) has been studied. The main factors controlling the preferential orientation of the AlN thin films are the ion-bombardment energies, incidence angle of the arriving particles, and deposition rate. At low pressure, a perpendicular and highly directional energetic ion-bombardment induces an orientation of the crystallites with their c-axis perpendicular to the substrate surface. At higher pressure (>15 mTorr), a spreading in the incidence angle of the arriving particles, due to gas phase collisions, favors the formation of AlN crystal twinning. A change in the preferred orientation of the films from (0001) to (1011) for deposition rates above 1.8 Å/s is observed.


2002 ◽  
Vol 51 (12Appendix) ◽  
pp. 187-192
Author(s):  
Kazuya KUSAKA ◽  
Kouhei FURUTANI ◽  
Takuya KIKUMA ◽  
Takao HANABUSA ◽  
Kikuo TOMINAGA

Vacuum ◽  
2000 ◽  
Vol 59 (2-3) ◽  
pp. 806-813 ◽  
Author(s):  
K Kusaka ◽  
D Taniguchi ◽  
T Hanabusa ◽  
K Tominaga

Sign in / Sign up

Export Citation Format

Share Document