Low Cost Microstructures for Preconcentration of Polar and Non-Polar Organic Compounds

2006 ◽  
Vol 514-516 ◽  
pp. 1250-1254 ◽  
Author(s):  
Lilian Marques Silva ◽  
Roberto R. Lima ◽  
Alexsander T. Carvalho ◽  
Maria Lucia Pereira Silva ◽  
Joana Catarina Madaleno ◽  
...  

Films produced by plasma polymerization of ethyl ether and methyl or ethyl acetate show good adsorption characteristic for polar and non-polar organic compounds. These films when used in microchannels machined in a 3D-structure present some preconcentration of organic compounds. Therefore, the aim of this work is to investigate the physical-chemical preconcentration mechanisms on this structure. The test molecules used were n-hexane and 2-propanol. Quartz crystal microbalance and mass spectrometry were used to measure preconcentration. Two different procedures for reactant injection on the structure were used: a continuous flow during several minutes or a small amount injected on a single pulse and in a few seconds. The microchannels were also modified by the introduction of small ceramic particles for enhancement of the flow dispersion. It was possible to notice for all films a similar kinetic of retention. The main removal mechanism is adsorption. Although all films can provide the removal of the adsorbents molecules, the most important characteristic for the adsorption and/or retention is the surface condition. Thus, the retention of polar compound can be troubled if a non-polar compound was used previously. The most promising films for retention are ethyl ether and ethyl acetate when n-hexane and 2-propanol are used as test molecules. The results using n-hexane or 2-propanol point out the use of low-cost microchannels for preconcentration development.

2021 ◽  
Vol 13 (4) ◽  
pp. 656-661
Author(s):  
Yiyan Lv ◽  
Qiwei Zhan ◽  
Xiaoniu Yu

Microbial-induced degradation of aromatic organic compounds and mineralization of zinc ions have attracted much attention because of its low cost, simple operation and quick response. This research, toluene was decomposed and made the concentration of carbonate ions increased accordingly by the enzymatic pressing of microorganisms, meanwhile carbonate ions mineralized zinc ions into carbonate precipitations. The composition and microstructure were analyzed systematically. The analysis results indicated that carbonate precipitations, basic zinc carbonate, could be successfully prepared by microbial method. The particle size of basic zinc carbonate was nanometer, and its shape was near-spherical. Furthermore, the phase composition, functional groups and surface morphology of the precipitations prepared by different methods were basically the same. This work provided a new method for remediation of zinc ion pollution based on the degradation of toluene.


2021 ◽  
Vol 18 ◽  
Author(s):  
Aparna Das

: In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally friendly, and sustainable technology. Compared to other light sources in photochemical reaction, LEDs have advantages in terms of efficiency, power, compatibility, and environmentally-friendly nature. This review highlights the most recent advances in LED-induced photochemical reactions. The effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization, and sensitization is discussed in detail. No other reviews have been published on the importance of white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this review is highly significant and timely.


2018 ◽  
Vol 63 (1) ◽  
pp. 170-178 ◽  
Author(s):  
László Kiss

In this article, the feasibility of the CuxS modified carbon microdisc electrode was examined by exposure to four different volatile organic compounds (2-propanol, acetic acid, ethyl acetate and n-butylamine) directly in their vapour phase using cyclic voltammetry and amperometry. The performance of the modified microdisc was compared with the bare carbon microdisc (30 μm in diameter) which was involved in a narrow-gap cell. By using both methods high current increase was observed for 2-propanol with the modified electrode and its sensitivity was sufficiently higher than with the bare electrode. The modified electrode showed lower current signals in case of acetic acid and n-butylamine. The latter formed a condensation layer at the interelectrode gap. Neither the bare nor the modified electrode was sensitive to ethyl acetate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2636
Author(s):  
Fenghui Cao ◽  
Jia Xu ◽  
Xinci Zhang ◽  
Bei Li ◽  
Xiao Zhang ◽  
...  

We developed a simple method to fabricate SiO2-sphere-supported N-doped CNTs (NCNTs) for electromagnetic wave (EMW) absorption. EMW absorption was tuned by adsorption of the organic agent on the precursor of the catalysts. The experimental results show that the conductivity loss and polarization loss of the sample are improved. Meanwhile, the impedance matching characteristics can also be adjusted. When the matching thickness was only 1.5 mm, the optimal 3D structure shows excellent EMW absorption performance, which is better than most magnetic carbon matrix composites. Our current approach opens up an effective way to develop low-cost, high-performance EMW absorbers.


Sign in / Sign up

Export Citation Format

Share Document