Influence of Strain Rate on Shear Localization during Deformation and Fracture of 5754 and 5182 Aluminium Alloy

2006 ◽  
Vol 519-521 ◽  
pp. 1047-1052 ◽  
Author(s):  
Mohammad Jaffar Hadianfard ◽  
Michael J. Worswick

The effect of strain rate in the range of 10-4 to 10-1 s-1 on localization of deformation and fracture behavior of 5754 and 5182 aluminum alloys is investigated. For this study, tensile tests, interrupted tensile tests, shear band decoration, fractography and image analysis has been used. This investigation is based on experimental work and observation of the material behavior. Results show that strain rate has some effect on the mechanical properties and deformation stability of the alloys. The area of localized plastic deformation and thickness of the shear bands were found to be sensitive to the strain rate. It was also observed that localization of plastic deformation and shear band formation is an important step in the damage propagation and final fracture of the alloys. Detail of damage development, based upon micrographs of samples interrupted at different stages of straining is presented

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 111
Author(s):  
Harald Rösner ◽  
Christian Kübel ◽  
Stefan Ostendorp ◽  
Gerhard Wilde

Plastic deformation of metallic glasses performed at temperatures well below the glass transition proceeds via the formation of shear bands. In this contribution, we investigated shear bands originating from in situ tensile tests of Al88Y7Fe5 melt-spun ribbons performed under a transmission electron microscope. The observed contrasts of the shear bands were found to be related to a thickness reduction rather than to density changes. This result should alert the community of the possibility of thickness changes occurring during in situ shear band formation that may affect interpretation of shear band properties such as the local density. The observation of a spearhead-like shear front suggests a propagation front mechanism for shear band initiation here.


1993 ◽  
Vol 321 ◽  
Author(s):  
H. Chen ◽  
Y. He ◽  
G. J. Shiflet ◽  
S. J. Poon

ABSTRACTWe report the first direct observation of crystallization induced in the slipped planes of aluminum based amorphous alloys by bending the amorphous ribbons. Nanometer-sized crystalline precipitates are found exclusively within a thin layer (shear band) in the slipped planes extending across the deformed amorphous alloy ribbons. It is also found that the nanocrystalline aluminum can be produced by ball-Milling. It is likely that local atomic rearrangements within the shear bands create the nanocrystals which appear after plastic deformation.


2003 ◽  
Vol 18 (4) ◽  
pp. 755-757 ◽  
Author(s):  
W. H. Jiang ◽  
M. Atzmon

Plastic deformation of amorphous Al90Fe5Gd5 was investigated using nanoindentation and atomic force microscopy. While serrated flow was detected only at high loading rates, shear bands were observed for all loading rates, ranging from 1 to 100 nm/s. However, the details of shear-band formation depend on the loading rate.


1997 ◽  
Vol 8 (5) ◽  
pp. 457-483 ◽  
Author(s):  
DAVID G. SCHAEFFER ◽  
MICHAEL SHEARER

The onset of shear-banding in a deforming elastoplastic solid has been linked to change of type of the governing partial differential equations. If uniform material properties are assumed, then (i) deformations prior to shear-banding are uniform, and (ii) the onset of shear-banding occurs simultaneously at all points in the sample. In this paper we study, in the context of a model for anti-plane shearing of a granular material, the effect of a small variation in material properties (e.g. in yield strength) within the sample. Using matched asymptotic expansions, we find that (i) the deformation is extremely non-uniform in a short time period immediately preceding the formation of shear-bands; and (ii) generically, a shear-band forms at a single location in the sample.


2009 ◽  
Vol 618-619 ◽  
pp. 437-441
Author(s):  
Hao Wen Xie ◽  
Peter D. Hodgson ◽  
Cui E Wen

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.


2012 ◽  
Vol 715-716 ◽  
pp. 158-163 ◽  
Author(s):  
Kenichi Murakami ◽  
N. Morishige ◽  
Kohsaku Ushioda

The effect of cold rolling reduction on shear band formation and crystal orientation within shear bands and annealing texture were investigated in Fe-3%Si {111}<112> single crystals. Several types of shear bands were observed with different angles to rolling direction, dependent on rolling reduction. As for shear band formation, those with smaller angles were formed earlier and those with larger angles were formed later. Regarding crystal orientation along shear bands after rolling reduction, orientation distribution from the initial became large in accordance with reduction and even exceeded Goss orientation when rolling reduction became larger than 40%. After annealing, however, recrystallized grains along shear bands were mainly Goss grains regardless of reduction. The speculated reason for the dominance of Goss after annealing is that Goss subgrains with less density of dislocations were surrounded by largely deformed areas.


2013 ◽  
Vol 634-638 ◽  
pp. 2835-2838
Author(s):  
Wei Qing Wang ◽  
Li Yang ◽  
Shi Gui Lv

During plastic deformation of materials, part of the plastic work is converted into heat, and the temperature field will be changed, this phenomenon is well known as thermoplastic effect. Based on the analysis of thermoplastic effect, the surface temperature of Q235 steel during quasi-static tensile tests was measured by using an infrared camera, and the surface temperature field and it versus time for different strain rate were obtained. A numerical procedure was devised to model the thermoplastic effect during the tensile tests by using ANSYS software. The results showed that, the heat loss during deformation process will be smaller as the strain rate increase, and the temperature increase on the specimen surface generated by the plastic deformation will be higher. The simulation results matched well with the experiment results showed that it was a good way to analyse the thermoplastic effect by the commercial finite element software.


Author(s):  
Shengfeng Shan ◽  
Bing Zhang ◽  
Yuanzhi Jia ◽  
Mingzhen Ma

A series of Ti40Zr25Cu9Ni8Be18)100-xTMx (x = 0, 1, 2, 3, 4 at.%, TM = Nb, Y) Bulk amorphous alloys were designed and prepared using the copper mold casting method. The microstructures, glass forming ability and mechanical properties of the alloys were investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning colorimetry (DSC), depth-sensitive nanoindentation and uniaxial compressive test. The Bulk amorphous alloys with different ductility were investigated by measuring their plastic deformation energy (PDE) of the first pop-in events during loading. The relationships between the PDE value, shear band formation and ductility in Bulk amorphous alloys have been investigated. The results show that the PDE value decreases by the Nb addition and promotes the generation of multiple shear bands easily, which increase the fracture strength and plasticity significantly. Substituting Nb with Y has exactly the reverse effect. A useful rule for preparing of Bulk amorphous alloys with high plasticity is herein proposed, whereby the chemical composition of the Bulk amorphous alloys can be tailored to possess a lower PDE value.


Sign in / Sign up

Export Citation Format

Share Document