3DAP Characterization and Thermal Stability of Nano-Scale Clusters in Al-Mg-Si Alloys

2006 ◽  
Vol 519-521 ◽  
pp. 245-250 ◽  
Author(s):  
Ai Serizawa ◽  
Shoichi Hirosawa ◽  
Tatsuo Sato

The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening β" phase significantly influences the two-step aging behavior of Al-Mg-Si alloys. In this work, two types of nanoclusters are found to be formed at different temperatures. The characterization of these two nanoclusters has been performed from the viewpoints of composition and thermal stability using a three-dimensional atom probe (3DAP) and differential scanning calorimetry (DSC). Mg-Si co-clusters formed at room temperature (RT), Cluster(1), play a deleterious role in the subsequent formation of the β" phase because of the high thermal stability even at the bake-hardening (BH) temperature of 443K. In contrast, the nanoclusters formed by pre-aging at 373K, Cluster(2), are effective in the formation of the refined β", suggesting that Cluster(2) transforms more easily into the β" phase than Cluster(1). The quantitative estimation of the chemical compositions of the two nanoclusters suggests that the Mg/Si ratio is one of the key factors in addition to the internal structures consisting of Si, Mg and probably vacancies. The detailed two-step aging mechanism in Al-Mg-Si alloys is proposed based on the characteristics of the two types of nanoclusters.

2005 ◽  
Vol 475-479 ◽  
pp. 357-360 ◽  
Author(s):  
Shoichi Hirosawa ◽  
Tatsuo Sato

The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening b” phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 644 ◽  
Author(s):  
Farimah Tikhani ◽  
Shahab Moghari ◽  
Maryam Jouyandeh ◽  
Fouad Laoutid ◽  
Henri Vahabi ◽  
...  

For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3701-3716
Author(s):  
Xinhao Feng ◽  
Zhihui Wu ◽  
Yanjun Xie ◽  
Siqun Wang

Cellulose nanocrystals (CNCs) were modified with methyl methacrylate (MMA) to improve the properties of the resulting three-dimensional (3D) stereolithography printed CNC/methacrylate (MA) resin composites. The dispersibility of the MMA-modified CNCs (MMA-CNCs) was substantially improved, as evidenced by the limited precipitation in the MA solution. Thermal gravimetry and differential scanning calorimetry measurements showed that the pyrolytic temperature of the MMA-CNC was 110 °C higher than that of the CNCs; the pyrolytic temperature and glass transition temperature of the resulting MMA-CNC/MA composites were higher than those of the CNC/MA. The tensile strength and modulus of the MMA-CNC/MA composites were improved by up to 38.3 MPa and 3.07 GPa, respectively, compared to those of the CNC/MA composites. These results demonstrated that the modification of CNC with MMA is a feasible approach to substantially improve the mechanical properties and thermal stability of the resulting MA-based composites.


2007 ◽  
Vol 558-559 ◽  
pp. 1255-1260 ◽  
Author(s):  
Eva Ravn Nielsen ◽  
Maria Augustesen ◽  
Kenny Ståhl

Mineral wool products can be used for thermal and acoustic insulation as well as for fire protection. The high temperature properties and the crystallization behaviour (devitrification) of the amorphous fibres during heating have been examined. Commercial stone wool and commercial hybrid wool (stone wool produced by a glass wool process) have been compared, as well as specially produced stone wool fibres. The fibres differed in chemical compositions and degree of oxidation given by Fe3+/Fetotal ratios. The materials were studied by thermal stability tests, X-ray diffraction, Mössbauer spectroscopy, secondary neutral mass spectroscopy, differential scanning calorimetry and thermal gravimetric analysis. When stone wool fibres were heated at 800 °C in air, oxidation of Fe2+ to Fe3+ occurred simultaneously with migration of divalent cations (especially Mg2+) to the surface. Decreasing Fe3+/Fetotal ratios resulted in increasing migration and improved thermal stability. The cations formed a surface layer mainly consisting of MgO. When heated to above 800 °C, bulk crystallization of the fibres took place with diopside and nepheline as the main crystalline phases. Commercial stone wool and the specially made fibres were considerably more temperature stable than the commercial hybrid wool. Commercial hybrid wool has a high Fe3+/Fetotal ratio of 65% resulting in less migration of cations during heat treatment.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1848
Author(s):  
Wenjing Zhang ◽  
Haofeng Xie ◽  
Songxiao Hui ◽  
Wenjun Ye ◽  
Yang Yu ◽  
...  

The fracture-behaviors of two Ti-Al-Sn-Zr-Mo-Nb-W-Si alloys with different slow-diffusing β stabilizing elements (Mo, W) were investigated through in-situ tensile testing at 650 °C via scanning electron microscopy. These alloys have two phases: the α phase with hcp-structure (a = 0.295 nm, c = 0.468 nm) and the β phase with bcc-structure (a = 0.332 nm). Three-dimensional atom probe (3DAP) results show that Mo and W mainly dissolve in the β phase, and they tend to cluster near the α/β phase boundary. Adding more slow-diffusing β stabilizing elements can improve the ultimate tensile strength and elongation of the alloy at 650 °C. During tensile deformation at 650 °C, microvoids mainly initiate at α/β interfaces. With increases in the contents of Mo and W, the β phase content increases and the average phase size decreases, which together have excellent accommodative deformation capability and will inhibit the microvoids’ nucleation along the interface. In addition, the segregation of Mo and W near the α/β interface can reduce the diffusion coefficient of the interface and inhibit the growth of microvoids along the interface, which are both helpful to improve the ultimate tensile strength and plasticity.


2011 ◽  
Vol 172-174 ◽  
pp. 315-320
Author(s):  
Carlos Capdevila ◽  
Michael K. Miller ◽  
K.F. Russell ◽  
J. Chao ◽  
F.A. López

The temporal evolution of the microstructure resulting from phase separation into Fe-rich (α), Cr-rich (α¢), and Fe(Ti,Al) (β¢) phases of a Fe-20Cr-6Al-0.5Ti alloy has been analyzed by thermoelectric power measurements (TEP). The early stages of decomposition and the evolution of the three-dimensional microstructure have been analyzed by atom probe tomography (APT). The roles of Cr, Al, and Ti during the decomposition process have been investigated in terms of solute partitioning between the phases. Analysis of proximity histograms revealed that significant Al and Ti partitioning occurs, which is consistent with theoretical calculations. The results indicate that as the α-α¢ phase separation proceeds, Al and Ti are rejected into the α phase, which causes the β¢ phase to nucleate on the surface of the α¢ phase.


2014 ◽  
Vol 64 (11) ◽  
pp. 542-550 ◽  
Author(s):  
Shoichi Hirosawa ◽  
Tomo Ogura ◽  
Ai Serizawa ◽  
Yoshiki Komiya ◽  
Tatsuo Sato

2014 ◽  
Vol 794-796 ◽  
pp. 1026-1031 ◽  
Author(s):  
Yasuo Takaki ◽  
Yasuhiro Aruga ◽  
Masaya Kozuka ◽  
Tatsuo Sato

The effects of pre-aging and natural aging on the bake hardening behavior of Al-0.62Mg-0.93Si (mass%) alloy with multi-step aging process were investigated by means of Vickers hardness test, tensile test, differential scanning calorimetry analysis (DSC) and transmission electron microscopy (TEM). The characteristics of nanoclusters (nano scale solute atom clusters) formed during pre-aging and natural aging were also investigated using the three dimensional atom probe (3DAP) analysis. The results revealed the occurrence of natural age hardening and that the bake hardening response was decreased after the extended natural aging even though the pre-aging was conducted before natural aging. Since the 3DAP results exhibited the Si-rich clusters were newly formed during extended natural aging, it was assumed that the Si-rich clusters caused the natural age hardening and the reduced bake hardening response corresponding to Cluster(1). The decrease of the bake hardening response was markedly higher in the later stage of bake hardening than in the early stage. The size of the β’’ precipitates were reduced with increasing the natural aging time. Exothermic peaks of Peak 2 and Peak 2’ were observed in the DSC curves for the alloys pre-aged at 363K. Peak 2’ became larger with the natural aging time. This is well understood by the following model. The transition from Cluster(2) to the β’’ phase occurs preferentially at the early stage of the bake hardening. Then the growth of the β’’ phase is inhibited by the presence of Cluster(1) at the later stage of bake hardening. The combined formation of Cluster(1) and Cluster(2) by the multi-step aging essentially affects the bake hardening response and the β’’ precipitates in the Al-Mg-Si alloys.


2010 ◽  
Vol 636-637 ◽  
pp. 917-921 ◽  
Author(s):  
Dariusz Oleszak ◽  
Tadeusz Kulik

The influence of Sn addition on the amorphization of CuTiZrNi alloys processed by mechanical alloying of a mixture of pure elemental powder was studied. The thermal stability and crystallization behaviour of the amorphous mechanically alloyed powders was determined and compared with rapidly quenched ribbons with the same nominal chemical compositions. X-ray diffraction and differential scanning calorimetry were employed as the experimental techniques for samples characterization. Both applied samples preparation techniques resulted in the formation of fully amorphous Cu47Ti34Zr11Ni8 and Cu37Sn10Ti34Zr11Ni8 alloys. However, significant differences in thermal stability and crystallization behaviour have been found, depending not only on the alloy composition, but on the fabrication method as well. The observed influence of Sn addition was more evident for the ribbons, resulting in the change of the number of crystallization effects, their temperatures and activation energy of crystallization. For mechanically alloyed powders these changes were not so dramatic.


2019 ◽  
Author(s):  
Andreas Boelke ◽  
Yulia A. Vlasenko ◽  
Mekhman S. Yusubov ◽  
Boris Nachtsheim ◽  
Pavel Postnikov

<p>The thermal stability of pseudocyclic and cyclic <i>N</i>-heterocycle-stabilized (hydroxy)aryl- and mesityl(aryl)-l<sup>3</sup>-iodanes (NHIs) through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is investigated. NHIs bearing <i>N</i>-heterocycles with a high N/C-ratio such as triazoles show among the lowest descomposition temperatures and the highest decomposition energies. A comparison of NHIs with known (pseudo)cyclic benziodoxolones is made and we further correlated their thermal stability with reactivity in a model oxygenation. </p>


Sign in / Sign up

Export Citation Format

Share Document