Protection of Aluminium Alloys via Hybrid Sol-Gel Coatings with Encapsulated Organic Corrosion Inhibitors

2006 ◽  
Vol 519-521 ◽  
pp. 661-666 ◽  
Author(s):  
A.N. Khramov ◽  
V.N. Balbyshev ◽  
R.A. Mantz

Several heterocyclic organic corrosion inhibitors that contain ionazible functional group were encapsulated into nano-structural hybrid organo-silicate coating to improve its corrosion protection performance on aluminum alloy 2024-T3 substrate. When the coating is formed on the substrate surface, it serves simultaneously as protective barrier and as a reservoir for leachable corrosion inhibitor that is stored and released through the mechanism of reversible ionic interaction with the matrix material. The efficiency of active corrosion protection for these coating systems was examined by electrochemical methods including potentiodynamic polarization (PDS) and electrochemical impedance spectroscopy (EIS). The effects of chemical structure and the loading concentration of the inhibitor within the coating were determined.

2012 ◽  
Vol 05 ◽  
pp. 234-241 ◽  
Author(s):  
NAHID PIRHADY TAVANDASHTI ◽  
SOHRAB SANJABI

Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide ( AlI ) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.


Coatings ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Wenjin Yan ◽  
Wee Kit Ong ◽  
Linda Yongling Wu ◽  
Sudesh L. Wijesinghe

Corrosion protection coatings need frequent developments to cater to different challenges arising from users. In addition to a long lasting corrosion protection, aesthetic requirements and multi-functional properties by the same coating system are prominent demands to be considered. Productivity is another vital factor to be considered, as there is a thriving demand from users to have more productive coating systems, such as a smaller number of layers in a system. Thus, attention to using different coating technologies is an essential step to fulfil these demands. This work investigates the use of sol-gel technology as a topcoat on a zinc rich primer to form a two-coat system. A colored sol-gel topcoat on a zinc primer was developed as a two-coat system to replace the current three or multi-coat systems to improve productivity while maintaining the sacrificial protective capability. The overall corrosion protection performance together with the color retaining capability was evaluated in this development. As another step forward, the development of sol-gel technology as a topcoat with additional inhibitive corrosion protection was investigated. Two corrosion inhibitors, namely molybdate and cerium(III), were loaded onto suitable inorganic oxide carriers and then incorporated into sol-gel coatings to provide an inhibitive protection other than the barrier protection. The corrosion performance of the coatings was evaluated using electrochemical impedance spectroscopy (EIS). Sol-gel coating with a cerium(III) system attained the highest impedance and proved to be the best candidate. The mechanical and physical properties of the coating systems are tested using international standard methods.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 385 ◽  
Author(s):  
Ana Karen Acero-Gutiérrez ◽  
Ana Lilia Pérez-Flores ◽  
Jesús Gilberto Godínez-Salcedo ◽  
Joel Moreno-Palmerin ◽  
Ángel de Jesús Morales-Ramírez

Tin oxide (SnO2) nanoparticles were successfully added to silicon oxide (SiO2) coatings deposited on A36 steel by the sol-gel and dip-coating methods. These coatings were developed to improve the performance of corrosion protection of steel in a 3 wt % NaCl solution. The effects of modifying the SnO2 particle concentration from 0–7.5 vol % were investigated by polarization resistance, Tafel linear polarization, and electrochemical impedance spectroscopy (EIS). The formation of protective barriers and their corrosion inhibition abilities were demonstrated. It was found by electrochemical studies that all of the coated samples presented higher corrosion resistances compared with an uncoated sample, indicating a generally beneficial effect from the incorporation of the nanoparticles. Furthermore, it was established that the relationship between the SnO2 content and the corrosion inhibition had parabolic behaviour, with an optimum SnO2 concentration of 2.5 vol %. EIS showed that the modified coatings improved barrier properties. The resistance for all of the samples was increased compared with the bare steel. The corrosion rate measurements highlighted the corrosion inhibition effect of SnO2 nanoparticles, and the Tafel polarization curves demonstrated a decrease in system dissolution reactions at the optimal nanoparticle concentration.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 948 ◽  
Author(s):  
Peter Rodič ◽  
Romana Cerc Korošec ◽  
Barbara Kapun ◽  
Alenka Mertelj ◽  
Ingrid Milošev

Pre-hydrolysed/condensed tetraethyl orthosilicate (TEOS) was added to a solution of methyl methacrylate (MMA) and 3-methacryloxypropyltrimethoxysilane (MAPTMS), and then copolymerised for various times to study the influence of the latter on the structure of hybrid sol-gel coatings as corrosion protection of aluminium alloy 7075-T6. The reactions taking place during preparation were characterised using real-time Fourier transform infrared spectroscopy, dynamic light scattering and gel permeation chromatography. The solution characteristics were evaluated, using viscosimetry, followed by measurements of thermal stability determined by thermogravimetric analysis. The optimal temperature for the condensation reaction was determined with the help of high-pressure differential scanning calorimetry. Once deposited on 7075-T6 substrates, the coatings were evaluated using a field emission scanning electron microscope coupled to an energy dispersive spectrometer to determine surface morphology, topography, composition and coating thickness. Corrosion properties were tested in dilute Harrison’s solution (3.5 g/L (NH4)2SO4 and 0.5 g/L NaCl) using electrochemical impedance spectroscopy. The copolymerization of MMA and MAPTMS over 4 h was optimal for obtaining 1.4 µm thick coating with superior barrier protection against corrosion attack (|Z10 mHz| ~ 1 GΩ cm2) during three months of exposure to the corrosive medium.


2014 ◽  
Vol 61 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Mansoureh Parsa ◽  
Seyed Mohammad Ali Hosseini ◽  
Zahra Hassani ◽  
Effat Jamalizadeh

Purpose – The purpose of this paper was to study the corrosion resistance of water-based sol-gel coatings containing titania nanoparticles doped with organic inhibitors for corrosion protection of AA2024 alloy. Design/methodology/approach – The coatings were obtained using tetraethylorthosilicate, 3-glycidoxypropyltrimethoxysilane, titanium (IV) tetrapropoxide and poly(ethylene imine) polymer as cross-linking agents. As corrosions inhibitors, 2-mercaptobenzoxazole and salicylaldoxime were incorporated into the sol-gel for the improvement of the corrosion resistance. The corrosion protection performance of coatings was studied using the potentiodynamic scan and the electrochemical impedance spectroscopy (EIS) methods. Atomic force microscopy was used to investigate surface morphology of the coatings. Findings – The results indicated that doping the sol-gel coatings with inhibitors leads to improvement of the corrosion protection. The comparison of doped coatings confirmed that corrosion protection performance of the sol-gel coatings doped with 2-mercaptobenzoxazole was better than for the sol-gel coatings doped with salicylaldoxime. Also the EIS results verified self-healing effects for the sol-gel coatings doped with 2-mercaptobenzoxazole. Originality/value – This paper indicates 2-mercaptobenzoxazole and salicylaldoxime can be added as corrosion inhibitors to sol-gel coatings to improve their corrosion protective properties for AA2024 alloy.


2014 ◽  
Vol 900 ◽  
pp. 526-530
Author(s):  
Wei Shang ◽  
Zhou Lan Yin ◽  
Yu Qing Wen ◽  
Xu Feng Wang

The composite coatings were obtained on a magnesium alloy by micro-arc oxidation and sol-gel technique. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion behavior of MAO coating and composite coatings in a simulated seawater solution. The results show that corrosion behavior of the MAO coating and composite coatings are different at different immersion times. Corrosion protection of the MAO coating gradually weaken with the extension of soaking time, but corrosion protection of the composite coatings become stronger first and then weaken.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3401
Author(s):  
Rui P. C. L. Sousa ◽  
Rita B. Figueira ◽  
Bárbara R. Gomes ◽  
Sara Sousa ◽  
R. Cristina M. Ferreira ◽  
...  

Organic-inorganic hybrids (OIH) are materials that can be easily synthesized by the sol-gel method and combine the advantages of organic and inorganic moieties within a single polymeric matrix. Imidazole derivatives are versatile organic compounds that can change their optical properties with the variation of pH due to the protonation or deprotonation of the nitrogen atoms. This work reports the preparation of different OIHs doped with different contents of two imidazole compounds (3a,b). The obtained materials were characterized structurally by FTIR, and the dielectric properties were studied by electrochemical impedance spectroscopy. The optical properties were studied by UV-Vis absorption and fluorescence spectroscopies. The FTIR analysis showed that the presence of the imidazole does not change the structural properties of the matrices. The normalized resistance values obtained for the doped matrices ranged between 8.57 and 9.32 Ω cm2, all being higher than the undoped matrix. The σ ranged between 9.49 and 10.28 S cm−1, being all higher than the pure OIH samples. Compound 3a showed a maximum absorption peak at 390 nm, which is present in the OIH spectra, proving the presence of the compound. In the case of compound 3b, a maximum absorption wavelength at 412 nm was found, and the compound peak was not clear, which may indicate that an interaction between the compound and the matrix occurred. A synergetic effect between the intrinsic emission of the matrix and the fluorescence of 3a is found on the OIH-doped matrices.


Sign in / Sign up

Export Citation Format

Share Document