Corrosion protective properties of coatings doped with inhibitors

2014 ◽  
Vol 61 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Mansoureh Parsa ◽  
Seyed Mohammad Ali Hosseini ◽  
Zahra Hassani ◽  
Effat Jamalizadeh

Purpose – The purpose of this paper was to study the corrosion resistance of water-based sol-gel coatings containing titania nanoparticles doped with organic inhibitors for corrosion protection of AA2024 alloy. Design/methodology/approach – The coatings were obtained using tetraethylorthosilicate, 3-glycidoxypropyltrimethoxysilane, titanium (IV) tetrapropoxide and poly(ethylene imine) polymer as cross-linking agents. As corrosions inhibitors, 2-mercaptobenzoxazole and salicylaldoxime were incorporated into the sol-gel for the improvement of the corrosion resistance. The corrosion protection performance of coatings was studied using the potentiodynamic scan and the electrochemical impedance spectroscopy (EIS) methods. Atomic force microscopy was used to investigate surface morphology of the coatings. Findings – The results indicated that doping the sol-gel coatings with inhibitors leads to improvement of the corrosion protection. The comparison of doped coatings confirmed that corrosion protection performance of the sol-gel coatings doped with 2-mercaptobenzoxazole was better than for the sol-gel coatings doped with salicylaldoxime. Also the EIS results verified self-healing effects for the sol-gel coatings doped with 2-mercaptobenzoxazole. Originality/value – This paper indicates 2-mercaptobenzoxazole and salicylaldoxime can be added as corrosion inhibitors to sol-gel coatings to improve their corrosion protective properties for AA2024 alloy.

2019 ◽  
Vol 66 (2) ◽  
pp. 188-194
Author(s):  
Yingjun Zhang ◽  
Xue-Jun Cui ◽  
Yawei Shao ◽  
Yanqiu Wang ◽  
Guozhe Meng ◽  
...  

PurposeThis paper aims to prepare a residual rust epoxy coating by adding different quantities of phytic acid (PA) on the surface of the rusty steel and investigate the corrosion protection of PA and its action mechanisms.Design/methodology/approachA residual rust epoxy coating by adding different quantities of PA was prepared on the surface of the rusty steel. The influence of PA on the corrosion resistance of epoxy-coated rusty steel was investigated by means of electrochemical impedance spectroscopy and adhesion testing.FindingsResults indicated that PA can substantially improve the corrosion resistance of epoxy-coated rusty steel. This improvement is due to the reaction of PA with residual rust and generation of new compounds with protection properties and increased adhesive strength effects on the coating/metal interface. The coating showed better protection performance when 2 per cent PA was added.Originality/valueConsidering the structure of the active groups, PA has strong chelating capability with many metal ions and can form stable complex compounds on the surface of a metal substrate, thereby improving corrosion resistance. In recent years, PA has been reported to be useful in the conversion of coatings or as green corrosion inhibitor. To the best of the authors’ knowledge, few studies have reported the use of PA as a rust converter or residual rust coating. The present work aims to improve the corrosion resistance of residual rust epoxy coating by adding PA.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Essam Mossalam ◽  
Nivin M. Ahmed ◽  
Eglal M.R. Souaya ◽  
Basil El-Sabbagh

Purpose The purpose of this research is to study the physical and mechanical properties beside the durability of concrete as well as corrosion resistance of reinforced concrete by replacing Ordinary Portland cement (OPC) with different ratios of silica fume and meta-kaolin and applying two paint formulations to enhance corrosion resistance and mechanical properties. In this work, modified concrete mixes containing pozzolanic materials of industrial wastes such as silica fume (SF) with ratios ranging between (0, 10 and 15%) and calcined raw material such as meta-kaolin (MK) with ratios (0, 3, 5 and 10%), were introduced using water binder ratio (w/b) 0.45 to study their effect on the physico-mechanical properties and durability of concrete as well as corrosion protection performance of reinforced concrete. Two paint formulations containing the same ingredients except that one of them is free from talc (G1) and the other contains talc (G2) were applied on the rebars embedded in these modified mixes. Talc is known to offer high pH to the surrounding media. Design/methodology/approach Modified concrete mixes containing the coated reinforced concrete steel with the different paint formulations in presence and absence of talc were tested, and the corrosion behavior was studied using electrochemical impedance spectroscopy (EIS) in 3.5% NaCl, and the concrete mixes were also tested through their compressive strength, chloride permeability, scanning electron microscope/energy dispersive X-ray analysis and bond strength. Findings The results revealed that the hardened reinforced concrete mix containing 10% SF with 5% MK with embedded rebars coated with G2 (paint containing talc) was the best concrete system which offers concrete sustainability besides high corrosion protection performance, i.e. presence of talc in the paints combined with the effect of cement blended with SF and MK showed positive effect on the reinforced concrete properties that leads to more durability and workability. Originality/value The integrity of using two efficient methods of corrosion protection beside the effect of the different replacements in concrete mixes containing coated reinforced concrete steel with paint formulations free from talc (G1) and others containing talc (G2), which lead to fatal changes in the pH of the surrounding media (i.e. concrete which has high alkaline pH) to achieve good concrete properties aside with convenient paint formulations together.


2012 ◽  
Vol 05 ◽  
pp. 234-241 ◽  
Author(s):  
NAHID PIRHADY TAVANDASHTI ◽  
SOHRAB SANJABI

Nanostructured hybrid silica/epoxy films containing boehmite nanoparticles were investigated in the present work as pretreatments for AA2024 alloy. To produce the nanocomposite sol-gel films, boehmite nanoparticles prepared from hydrolysis/condensation of aluminum isopropoxide ( AlI ) were doped into another hybrid organosiloxane sol. The produced oxide nanoparticles have the capability to act as nanoreservoirs of corrosion inhibitors, releasing them controllably to protect the metallic substrate from corrosion. For this purpose the corrosion inhibitor, cerium nitrate, was introduced into the sol-gel system via loading the nanoparticles. The morphology and the structure of the hybrid sol-gel films were studied by Scanning Electron Microscopy (SEM). The corrosion protection properties of the films were investigated by Potentiodynamic Scanning (PDS) and Electrochemical Impedance Spectroscopy (EIS). The results show that the presence of boehmite nanoparticles highly improved the corrosion protection performance of the silica/epoxy coatings. Moreover, they can act as nanoreservoirs of corrosion inhibitors and provide prolonged release of cerium ions, offering a self-healing property to the film.


2017 ◽  
Vol 64 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Sebahattin Kirtay

Purpose The purpose of this paper is to investigate the corrosion resistance of SiO2-Al2O3 coating on mild steel. Design/methodology/approach SiO2-Al2O3 was coated using sol-gel method, and electrochemical measurements were applied to assess the performance of the coated steel. Findings The main conclusion is that SiO2-Al2O3-coated specimens acquired a higher corrosion resistance than that of uncoated specimen. icorr values of the coated specimens were between 12 and 14 times smaller than those of uncoated specimen. The coated specimens exhibited a higher Rcor value at electrochemical impedance spectroscopy analysis. The high values of Rcor and low values of CPEdl observed within the SiO2-Al2O3-coated samples imply an improved anti-corrosion capability. Originality/value In this work, there are three points of originality. First, steel specimens were coated with ormosil-based solution by applying sol-gel dip coating method. Second, both SiO2 and Al2O3 coatings were applied simultaneously at a considerably low temperature, i.e. 200 °C. Finally, the performance of the coated materials against wet corrosion was improved significantly.


2018 ◽  
Vol 65 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Behnam Abdollahi ◽  
Daryoush Afzali ◽  
Zahra Hassani

Purpose SiO2 and SiO2-ZrO2 nanocomposites were coated by sol–gel dipping method on carbon steel 178 (178 CS). Nanostructure and phase properties of nanocomposite coating were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared studies. Electrochemical polarization and electrochemical impedance spectroscopy (EIS) tests were used to study the corrosion behavior of 178 CS that was coated with SiO2-ZrO2 nanocomposite and SiO2 coating in 3.5 per cent NaCl solution. The results indicated that SiO2-ZrO2 nanocomposite coating performed better in terms of corrosion resistance compared with SiO2 coating. The corrosion resistance of SiO2-ZrO2 nanocomposite coating could be increased significantly in by approximately three and seven times of that of SiO2 coating and bare 178 CS, respectively. Design/methodology/approach SiO2 and SiO2-ZrO2 nanocomposites were coated using sol–gel dipping method on carbon steel 178. Electrochemical polarization and EIS tests have been used to study the corrosion behavior of 178 CS that was coated with SiO2-ZrO2 nanocomposite and SiO2 coating in 3.5 per cent NaCl solution. Findings Results indicated that SiO2-ZrO2 nanocomposite coating performed better in terms of corrosion resistance compared with SiO2 coating. The corrosion resistance of SiO2-ZrO2 nanocomposite coating could be increased significantly in by approximately three and seven times of that of SiO2 coating and bare 178 CS, respectively. Originality/value The SiO2-ZrO2 nanocomposite coating film showed significant improvement in corrosion resistance of 178 CS. The highest polarization resistance of the nanocomposite coating film was 10,600 Ω/cm2 from SiO2-0.2 ZrO2.


2015 ◽  
Vol 62 (2) ◽  
pp. 88-94 ◽  
Author(s):  
Ahmad Khajouei ◽  
Effat Jamalizadeh ◽  
Seyed Mohammad Ali Hosseini

Purpose – The purpose of this paper was to study the corrosion resistance of AA2024 alloy using surfactant-modified halloysite nanocapsules capable of holding benzotriazole (BTA) as the corrosion inhibitor and discharging it into the solution. Design/methodology/approach – The effect of surfactant shells was studied by surfactant-modified halloysite nanotubes fabricated through assembly of two types of cationic surfactants. The zeta potential and size distribution measurements were performed using a Zetasizer Nano. The concentration of BTA during release into the solution was detected by using a UV–vis spectrophotometer. The anti-corrosion activity of nanocapsules as free agents with respect to the AA2024 alloy was investigated using the potentiodynamic scan (PDS) method. An epoxy resin doped with nanocapsules was used as an anti-corrosion coating deposited on the AA2024 alloy. The corrosion protection performance of coatings was studied by using the electrochemical impedance spectroscopy (EIS) method. Findings – The results indicate that the release of the inhibitor from nanocapsules depends on the surfactant shell components. The PDS results confirmed the feasibility of developing “smart” corrosion protection by inhibitor-loaded nanocapsules. The results of EIS measurements showed that the coating with the nanocapsules exhibited enhanced corrosion protection in comparison with the undoped coating. Originality/value – The findings of this paper indicate that surfactant-modified halloysite nanocapsules can be added to epoxy resin coatings to improve their corrosion protective properties for the AA2024 alloy.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 704
Author(s):  
Marija Riđošić ◽  
Nebojša D. Nikolić ◽  
Asier Salicio-Paz ◽  
Eva García-Lecina ◽  
Ljiljana S. Živković ◽  
...  

Electrodeposition and characterization of novel ceria-doped Zn-Co composite coatings was the main goal of this research. Electrodeposited composite coatings were compared to pure Zn-Co coatings obtained under the same conditions. The effect of two ceria sources, powder and home-made sol, on the morphology and corrosion resistance of the composite coatings was determined. During the electrodeposition process the plating solution was successfully agitated in an ultrasound bath. The source of the particles was found to influence the stability and dispersity of plating solutions. The application of ceria sol resulted in an increase of the ceria content in the resulting coating and favored the refinement from cauliflower-like morphology (Zn-Co) to uniform and compact coral-like structure (Zn-Co-CeO2 sol). The corrosion resistance of the composite coatings was enhanced compared to bare Zn-Co as evidenced by electrochemical impedance spectroscopy and scanning Kelvin probe results. Zn-Co doped with ceria particles originating from ceria sol exhibited superior corrosion resistance compared to Zn-Co-CeO2 (powder) coatings. The self-healing rate of artificial defect was calculated based on measured Volta potential difference for which Zn-Co-CeO2 (sol) coatings exhibited a self-healing rate of 73.28% in a chloride-rich environment.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document