Sintering Stainless Steels with Boron Addition in Nitrogen Base Atmosphere

2007 ◽  
Vol 534-536 ◽  
pp. 733-736 ◽  
Author(s):  
J. Abenojar ◽  
D. Esteban ◽  
M.A. Martinez ◽  
Francisco Velasco

Stainless steel has become increasingly used in the nuclear industry recently. Thus, this study is aimed at investigating stainless steel 316L with boron addition and the possibility of sinter these materials in nitrogen rich atmospheres. By analyzing the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties were found to unify. The P/M technologies enable higher boron quantities to be added to the steel. This was not possible with the solidification conventional technologies, as segregation is produced in the latter. Mixtures with 0.75 and 1.5% boron were prepared. Uniaxial compaction (at 700 MPa) was carried out to study the green density of compacted materials. The sintering atmosphere used was N2-10%H2-0.1%CH4, and was used to form boron nitrides instead of chromium nitrides. Although some boron nitride was formed, not all chromium nitride formation was avoided. The sintered samples were characterized through their physical properties (density and dimensional change), chemical analysis (carbon and nitrogen contents), mechanical behavior (bending strength and hardness) and wear behavior. To finish the materials characterization, a microstructural study is proposed. Lastly, the wear tracks were observed by SEM. Boron nitride has precipitated in grain boundaries, making more difficult the sintering of the material and reducing the properties of the stainless steel.

2018 ◽  
Vol 21 (4) ◽  
pp. 508-515 ◽  
Author(s):  
Marwan Arbilei Arbilei ◽  
Jamal Mohammed Hamed

 Liquid nitrate is an important method used to improve mechanical properties. One of these properties is resistance to fatigue. The aim of this study was to improve the fatigue resistance of the stainless steel 316L. The rotational bending method was used with constant and variable stresses at different times of (1, 3, 5) hours and at (530, 630) C0. These tests were performed before and after nitration. The results showed that the depth of the nitride layer was (0.21, 0.33, 0.45) mm, increasing with time nitriding when the temperature was 530 C0. While the depth of this layer at a temperature of 630 C0 (0.26, 0.39,0.5) mm with increasing time. As a result of these processes, a layer of solid chromium nitrides and other phases of iron nitride were formed on the outer surface. These layers helped to inhibit the growth of the cracks and their progress in addition to the generation of pressure stresses on the surface leading to obstructing the progress of the cracks. This study showed that the fatigue resistance was directly proportional to the increase in nitrate time due to the increased depth of the hardened layer, but this resistance decreased when the temperature was 630 C0 due to the formation of brittle phase with low resistance.


2020 ◽  
Vol 1002 ◽  
pp. 33-43
Author(s):  
Nawal Mohammed Dawood ◽  
Nabaa S. Radhi ◽  
Zainab S. Al-Khafaji

This research signifies an attempt to apply composite coating by co-deposition coating and assessing, enhancement the Nickel coatings features, by adding the particles of silicon-carbide to solution of electrodeposited. Stainless steel specimens have been subject to electroplating coating utilizing Nickel and nanosilicon carbide particles (70-100 nm) with various amounts (16, 24, 32 and 40) g/L. After coating, the specimens were tested by SEM, AFM, impeded in a solution with 3.5 percent NaCl to investigate the corrosion performance. Then testing the microhardness, and wear resistance. Results obtained from this work showed a great reduction in corrosion currents caused by adding of inert nanoparticles. These enhancements had been detected on all conducted tests for corrosion and wear.


2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


2012 ◽  
Vol 15 (3) ◽  
pp. 112-122
Author(s):  
Ali H. Ataiwi ◽  
◽  
Abdul Khaliq F. Hamood ◽  
Rana A. Majed ◽  
◽  
...  

Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


2021 ◽  
pp. 102104
Author(s):  
Xianglong Wang ◽  
Oscar Sanchez-Mata ◽  
Sıla Ece Atabay ◽  
Jose Alberto Muñiz-Lerma ◽  
Mohammad Attarian Shandiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document