Microstructural Aspects by Electron Microscopy Observed in Al-Mg Based Alloys after Special P/M Processes

2007 ◽  
Vol 539-543 ◽  
pp. 446-451
Author(s):  
Waldemar Alfredo Monteiro ◽  
S.J. Buso ◽  
A. Almeida Filho

In the last decade light materials have been studied thoroughly and used in components of pieces in the automobile, naval and aerospace industries. Their application makes possible mass reduce, load capacity increase, improvement in the mechanical properties when it is possible. Aluminium-magnesium alloys present good mechanical properties at moderate mechanical efforts (400 to 700 MPa) and good corrosion resistance. The alloys in study (Al-2Mg-0.6Zr and Al-2Mg-1Nb) were made by powder metallurgy (P/M) techniques, employing hot compactation and extrusion processes followed by cold work and thermal treatments. The analysis by SEM and TEM shows an evolution in the microstructure of precipitates with the increase of the time of thermal treatment, according to literature. The distribution of the precipitates in both alloys was observed and identified by EDS microanalysis (SEM and TEM).

Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1957 ◽  
Vol 6 (7) ◽  

Abstract ALCAN 350 is a 10% magnesium-aluminum casting alloy having high mechanical properties, excellent machinability, and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-52. Producer or source: Aluminum Company of Canada Ltd.


Alloy Digest ◽  
1971 ◽  
Vol 20 (11) ◽  

Abstract COPPER ALLOY No. 675 is a copper-zinc alloy having excellent mechanical properties and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-244. Producer or source: Brass mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (10) ◽  

Abstract ANACONDA Alloy (C) 521 is the phosphor bronze used where the highest demand is made for resilience, strength and resistance to fatigue. It has generally higher mechanical properties than Anaconda Alloy (A) 510 which is the most widely used phosphor bronze. Alloy (C) 521 has excellent to good corrosion resistance in most environments. Typical applications include heavy-duty springs, bridge bearing plates and heavy-duty cold-headed parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-381. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


2020 ◽  
Vol 38 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Cristina Garcia-Cabezon ◽  
Celia Garcia-Hernandez ◽  
Maria L. Rodriguez-Mendez ◽  
Gemma Herranz ◽  
Fernando Martin-Pedrosa

AbstractMicrostructural changes that result in relevant improvements in mechanical properties and electrochemical behavior can be induced using different sintering conditions of ASTM F75 cobalt alloys during their processing using powder metallurgy technique. It has been observed that the increase in carbon and nitrogen content improves corrosion resistance and mechanical properties as long as the precipitation of carbides and nitrides is avoided, thanks to the use of rapid cooling in water after the sintering stage. In addition, the reduction of the particle size of the powder improves hardness and resistance to corrosion in both acid medium with chlorides and phosphate-buffered medium that simulates the physiological conditions for its use as a biomaterial. These results lead to increased knowledge of the role of carbon and nitrogen content in the behavior displayed by the different alloys studied.


2019 ◽  
Vol 18 (3) ◽  
pp. 331-338
Author(s):  
Jemssy Ronald Rohi ◽  
Priyo Tri Iswanto ◽  
Tjipto Sujitno ◽  
Erich Umbu Kondi

AISI 316L is widely used for implantation in orthopedic surgery due to its good corrosion resistance, mechanical properties and low cost. However, AISI 316L is not well suited for biocompatibility with the body, so implant material with AISI 316L can’t be used for a long time. One way to improve the corrosion resistance and mechanical properties of AISI 316L is to perform a surface treatment such as sputtering. This study discusses the effect of deposition sputtering TiN of 60, 90, 120 and 150 minutes on roughness and surface hardness at a ratio of argon gas and nitrogen to 80% Ar:20% N2. The results of the surface roughness value of the TiN sputtering layer deposited to AISI 316L for 60, 90, 120, and 150 minutes were 0.02 μm, 0.04 μm, 0.06 μm, and 0.04 μm respectively. This shows that the coating time of TiN in AISI 316L has no significant influence on value of surface roughness. Surface hardness results at 60, 90, 120, and 150 minutes were obtained with 268 HVN, 275 HVN, 278 HVN and 282 HVN. Increased hardness value, as the TiN thin layer has a higher hardness value compared to AISI 316L. The longer the deposition time, the more layers are formed and the layer becomes thicker. With the thickness of the layer, the density at the grain boundary increases. Because the higher density leads to grain growth, in which form micropores.


Alloy Digest ◽  
2021 ◽  
Vol 70 (10) ◽  

Abstract OUTOKUMPU MODA 430/4016 is a 16% chromium ferritic stainless steel that combines good mechanical properties with good corrosion resistance and heat and oxidation resistance up to 815 °C (1500 °F). It is the most commonly used ferritic stainless steel grade and can be used to replace type 304 austenitic stainless steel in certain applications. It is best suited for mildly corrosive environments. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1340. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Raffmetal EN AB-Al Si7Mg0.3 (EN AB-42100) is a heat-treatable, Al-Si-Mg casting alloy in ingot form for remelting. It is used extensively for producing sand, permanent mold and investment castings for applications requiring a combination of excellent casting characteristics, high strength with good elongation, and good corrosion resistance. This alloy can be produced to a wide range of mechanical properties by making small adjustments to the magnesium content and/or heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-480. Producer or source: Raffmetal S.p.A.


Author(s):  
Andrea Gruttadauria ◽  
Silvia Barella ◽  
Claudia Fiocchi

Abstract The Ni–Fe–Cr system is the basis of a series of commercial alloys featuring chemical–physical characteristics that allow them to be used in a variety of fields where excellent resistance to aggressive environments is required. In this scenario, the CU5MCuC alloy, the foundry counterpart of Alloy 825, is proving successful in the petrochemical field thanks to its good corrosion resistance in acidic and highly oxidizing environments. Intergranular corrosion resistance, critical for this material, is ensured by the stabilization treatment that allows precipitation of Nb carbides. Strengthening of this alloy takes place only via a solid solution. Therefore, its mechanical properties depend on the solution annealing treatment: often this treatment alone does not make it possible to reach the UTS imposed by the ASTM-A494 standard. In this work, the possibility of using stabilization treatment to increase mechanical strength as well was considered. Treatments, with different combinations of time and temperature, were carried out in order to modify the material’s microstructure. After the thermal treatments, microstructural analyses, mechanical tests and (pitting and intergranular) corrosion and resistance tests were carried out to identify optimal treatment parameters in order to promote the evolution of microstructural constituents capable of improving mechanical strength without decreasing corrosion resistance. The treatment that achieves the best compromise between mechanical properties and corrosion resistance is stabilization at 970 °C for 4 h.


Sign in / Sign up

Export Citation Format

Share Document