Characters of Coarse Grains Subdivisions in Rolled Polycrystalline Al

2007 ◽  
Vol 546-549 ◽  
pp. 1033-1036
Author(s):  
Qi Ping Hu ◽  
Yong Zhang ◽  
Yun Lai Deng

Deformation microstructures and micro-orientations of columnar grains with different orientations in a polycrystalline high purity Al cold-rolled up to 65% (thickness reduction) were investigated using electron backscatter diffraction (EBSD) technique. It was found that rotations were Inhomogeneous within the individual grains, the rotation angles of the parts close to the initial boundaries (BPs) were smaller than those remote from the boundaries (IPs), e.g. the deviation angles between the BPs and the IPs were 5-6° in the grains with <001>//RD orientation, leading to the rotation along the α-fiber, while the deviation angles were 5-12° in the grains with <121>//ND orientation rotating toward the β-fiber. These results demonstrated that the microstructures and local rotations of various parts within the rolled individual columnar grains were influenced by their initial orientations and boundaries.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.


2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2013 ◽  
Vol 46 (1) ◽  
pp. 216-223
Author(s):  
Shan-Rong Zhao ◽  
Hai-Jun Xu ◽  
Rong Liu ◽  
Qin-Yan Wang ◽  
Xian-Yu Liu

Snowflake-shaped dendrites of β-eucryptite–β-quartz solid solution were artificially crystallized in a matt glaze, and the crystallographic orientation of the dendrites was analysed by the electron backscatter diffraction (EBSD) technique. The six branches of a snowflake-shaped dendrite in the plane (0001) are along 〈110〉. From the orientation determination, a twin relationship and a topotactic relationship between dendrites were found. The twin axes are [011], [0{\overline 1}1] and [210], and the twin planes perpendicular to the twin axes are ({\overline 1}2{\overline 1}2) and (1{\overline 2}12). From the reticular theory of twinning, it was calculated that the twin indexn= 2 and the obliquity ω = 3.2877°. The studied dendrite is a twin by reticular pseudomerohedry with low twin index and obliquity. In the topotactic growth, no twin elements have been found, but the three main crystallographic directions 〈001〉, 〈210〉 and 〈110〉 of the two dendritic crystals overlap each other. The degree of lattice coincidence between the two crystals in this topotactic growth is also discussed.


2000 ◽  
Vol 6 (S2) ◽  
pp. 954-955
Author(s):  
Steven R. Claves ◽  
Wojciech Z. Misiolek ◽  
William H. Van Geertruyden ◽  
David B. Williams

Electron Backscattering Diffraction (EBSD) is an important tool for analyzing the crystal grain orientation of a microstructure and can be used to formulate conclusions about microtexture, texture determined from individual grains. This technique has been used to study a 6xxx series aluminum alloy's response to the deformation of the extrusion process. Extrusion is the process by which a billet of material is forced, under high pressure, through a die. The material undergoes a significant decrease in cross sectional area, and is formed into a shape equivalent to the geometry of the die orifice. Different bearing lands are shown in shown in Figure 1. These surfaces form the part, and are designed to control the metal flow making it uniform through the die, thus yielding good mechanical properties. This research was focused on the resultant microstructure. The shaded regions of Figure 2 show the two surface regions where EBSD measurements were taken.


2011 ◽  
Vol 702-703 ◽  
pp. 548-553 ◽  
Author(s):  
Stuart I. Wright ◽  
Jay A. Basinger ◽  
Matthew M. Nowell

Electron backscatter diffraction (EBSD) has become the preferred technique for characterizing the crystallographic orientation of individual grains in polycrystalline microstructures due to its ability to rapidly measure orientations at specific points in the microstructure at resolutions of approximately 20-50nm depending on the capabilities of the scanning electron microscope (SEM) and on the material being characterized. Various authors have studied the angular resolution of the orientations measured using automated EBSD. These studies have stated values ranging from approximately 0.1° to 2° [1-6]. Various factors influence the angular resolution achievable. The two primary factors are the accuracy of the detection of the bands in the EBSD patterns and the accuracy of the pattern center (PC) calibration. The band detection is commonly done using the Hough transform. The effect of varying the Hough transform parameters in order to optimize speed has been explored in a previous work [6]. The present work builds upon the earlier work but with the focus towards achieving the best angular resolution possible regardless of speed. This work first details the methodology used to characterize the angular precision then reports on various approaches to optimizing parameters to improve precision.


2011 ◽  
Vol 17 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Stuart I. Wright ◽  
Matthew M. Nowell ◽  
David P. Field

AbstractSince the automation of the electron backscatter diffraction (EBSD) technique, EBSD systems have become commonplace in microscopy facilities within materials science and geology research laboratories around the world. The acceptance of the technique is primarily due to the capability of EBSD to aid the research scientist in understanding the crystallographic aspects of microstructure. There has been considerable interest in using EBSD to quantify strain at the submicron scale. To apply EBSD to the characterization of strain, it is important to understand what is practically possible and the underlying assumptions and limitations. This work reviews the current state of technology in terms of strain analysis using EBSD. First, the effects of both elastic and plastic strain on individual EBSD patterns will be considered. Second, the use of EBSD maps for characterizing plastic strain will be explored. Both the potential of the technique and its limitations will be discussed along with the sensitivity of various calculation and mapping parameters.


2021 ◽  
pp. 1-11
Author(s):  
Tilman Zscheckel ◽  
Wolfgang Wisniewski ◽  
Christian Rüssel

Currently, the automated electron backscatter diffraction (EBSD) technique only allows the differentiation of the Laue groups based on an electron backscatter pattern (EBSP). This article shows that information concerning the lattice plane polarity is not only stored in the EBSP, but also in the Hough transformed EBSP where it can be easily accessed for automated evaluation. Polar Kikuchi bands lead to asymmetric peaks during the Hough transformation that are dependent on the atomic number difference of the involved atoms. The effect can be strong enough to be detected when evaluating the intensities of the regular excess and deficiency lines. Polarity detection from the Hough transformation of an EBSP cannot only enhance the utility of the EBSD technique and expand the information gained from it, but also illustrates a path toward automated polarity determination during EBSD scans.


2007 ◽  
Vol 558-559 ◽  
pp. 413-418 ◽  
Author(s):  
Wan Qiang Xu ◽  
Michael Ferry ◽  
Julie M. Cairney ◽  
John F. Humphreys

A typical dual-beam platform combines a focused ion beam (FIB) microscope with a field emission gun scanning electron microscope (FEGSEM). Using FIB-FEGSEM, it is possible to sequentially mill away > ~ 50 nm sections of a material by FIB and characterize, at high resolution, the crystallographic features of each new surface by electron backscatter diffraction (EBSD). The successive images can be combined to generate 3D crystallographic maps of the microstructure. A useful technique is described for FIB milling that allows the reliable reconstruction of 3D microstructures using EBSD. This serial sectioning technique was used to investigate the recrystallization behaviour of a particle-containing nickel alloy, which revealed a number of features of the recrystallizing grains that are not clearly evident in 2D EBSD micrographs such as clear evidence of particle stimulated nucleation (PSN) and twin formation and growth during PSN.


Sign in / Sign up

Export Citation Format

Share Document