Mechanism of Texture Evolution during Primary Recrystallisation and Grain Growth in a Zr-2Hf Alloy

2007 ◽  
Vol 550 ◽  
pp. 545-550 ◽  
Author(s):  
K. Zhu ◽  
Brigitte Bacroix ◽  
Thierry Chauveau ◽  
D. Chaubet ◽  
Olivier Castelnau

The evolution of crystallographic texture in a Zr-2Hf alloy has been investigated during deformation, primary recrystallisation and normal grain growth. The as-deformed states (50-90% deformation) are characterized by a major tilted {0001}<1010> texture component and this component is reinforced with increasing deformation. A decrease in the intensity of the tilted {0001}<10 10> component and a continuous increase in the intensity of the tilted {0001}<1120 > component take place during primary recrystallisation. Normal grain growth is associated with the coarsening of grains with the {0001}<1120 > orientation. This texture evolution is interpreted on the basis of the evaluation of the stored energy and the consideration of specific grain boundaries with low energy and/or high mobility.

2011 ◽  
Vol 306-307 ◽  
pp. 116-119
Author(s):  
Masahiko Demura ◽  
Ya Xu ◽  
Toshiyuki Hirano

This article presents the texture evolution and the ductility improvement of the cold-rolled foils of boron-free Ni3Al during the recrystallization and the subsequent grain growth. The cold-rolled foils had sharp {110} textures. After the recrystallization at 873K/0.5h, the texture was disintegrated with several texture components. Interestingly, most of them had a single rotation relationship. i.e. 40˚ around <111>. With the progress of the grain growth, however, the texture returned to the sharp, cold-rolled textures. This two-stage texture evolution, called as “Texture memory effect”, was explained assuming a high mobility of the grain boundary with the 40˚<111> rotation relationship. The texture returning was highly effective to improve the ductility of the foils.


2011 ◽  
Vol 127 ◽  
pp. 89-94 ◽  
Author(s):  
Ye Chao Zhu ◽  
Jiong Hui Mao ◽  
Fa Tang Tan ◽  
Xue Liang Qiao

Low energy grain boundaries were considered to be important in abnormal grain growth by theoretical deduction. The disorientation angles and coincidence site lattice grain boundaries distribution of more than 20 Goss grains and their neighboring matrix grains in primary recrystallized Fe-3%Si alloy were investigated using an electron backscatter diffraction method. It was found that the frequency of low energy grain boundaries of Goss grains which are more likely to abnormally grow are higher than their neighboring matrix grains, which indicated that low energy grain boundaries play a dominant role in the abnormal grain growth of Fe-3%Si alloy. The result meets well with the abnormal grain growth theory.


2003 ◽  
Vol 766 ◽  
Author(s):  
D.P. Field ◽  
M.M. Nowell ◽  
O.V. Kononenko

AbstractRecrystallization, grain growth and crystallographic texture evolution in Cu films is an area of importance for IC interconnect fabrication as the film characteristics influence the resulting line microstructure. This study examines Cu films deposited by partially ionized beam deposition onto a sublayer of tantalum nitride and additionally onto alpha- C:H. The films were annealed in-situ in the SEM chamber and intermittent orientation imaging was used to characterize the grain growth and crystallographic texture evolution in the films. Both initial and final textures are weak in each of the films analyzed, but are a function of sublayer material and thickness. Grain size in the Cu films is significantly smaller for the tantalum nitride sublayer than for the á-C:H sublayer.


2004 ◽  
Vol 467-470 ◽  
pp. 537-544 ◽  
Author(s):  
K. Zhu ◽  
D. Chaubet ◽  
Brigitte Bacroix ◽  
Jean Luc Béchade

The recrystallization of a Zr-2Hf alloy sheet deformed by plane strain compression at room temperature and then heat treated in the temperature range 500-650°C is studied. The microstructure, local and global crystallographic textures are investigated by EBSD and X-ray techniques. The as-deformed condition exhibits a heterogeneous microstructure composed of highly and less deformed zones, the EBSD indexing of the latter ones being more reliable. The asdeformed condition displays a (0001) < 0 1 10 > crystallographic texture. The evolution of the microstructure during recrystallization very much depends on the amount of local deformation. Recrystallization begins in highly deformed zones, new grains having two variants of texture components, {0001} < 0 1 10 > and {0001} < 0 2 11 >. Some change of preferred orientations concomitant with grain growth at 600 and 650°C has been observed with a decrease in the {0001} < 0 1 10 > component and an increase in the {0001} < 0 2 11 > component.


2012 ◽  
Vol 715-716 ◽  
pp. 197-202
Author(s):  
F. Uyar ◽  
S. Wilson ◽  
Myrjam Winning ◽  
Anthony D. Rollett

Abstract.are preferentially eliminated, thus leading to interface texture development and a higher pop-ulation of low energy grain boundaries. However, when stress is introduced as an additionaldriving force, the dynamics of grain growth change. To model these effects, a three dimensionalanisotropic multi-level set model was modified in order to account for the effect of stress field ongrain growth. For this mesoscale study, grain boundaries were treated as dislocation structuresand their associated net Burgers vectors were calculated using the misorientation informationand boundary inclinations. Using these net Burgers vectors and their associated densities, ad-ditional forces due to stress field were calculated via the Peach-Koehler equation. Qualitativecomparisons of 5 parameter grain boundary character distribution will be carried out in orderto analyze the differences in texture evolution during grain growth.


2009 ◽  
Vol 1156 ◽  
Author(s):  
Bala Radhakrishnan ◽  
Gorti Sarma

AbstractThe paper addresses grain growth in copper interconnects in the presence of thermal expansion mismatch stresses. The evolution of grain structure and texture in copper in the simultaneous presence of two driving forces, curvature and elastic stored energy difference, is modeled by using a hybrid Potts model simulation approach. The elastic stored energy is calculated by using the commercial finite element code ABAQUS, where the effect of elastic anisotropy on the thermal mismatch stress and strain distribution within a polycrystalline grain structure is modeled through a user material (UMAT) interface. Parametric studies on the effect of trench width and the height of the overburden were carried out. The results show that the grain structure and texture evolution are significantly altered by the presence of elastic strain energy.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


2016 ◽  
Vol 879 ◽  
pp. 454-458 ◽  
Author(s):  
Jia Qi Duan ◽  
Md Zakaria Quadir ◽  
Michael Ferry

Microstructure and texture evolution of commercially pure Ni processed by accumulative roll-bonding (ARB) up to eight cycles were studied using electron back scattered diffraction (EBSD). During ARB processing, the original coarse equiaxed grains were gradually transformed into refined lamellar grains along the rolling direction (RD). Shear bands started forming after three cycles. The fraction of low angle grain boundaries (LAGBs) increased after the first and second cycle because of orientation spreading within the original grains. However, their fraction decreased with the evolution of high angle grain boundaries (HAGBs) during subsequent deformations, until saturation was reached after six cycles. Overall, the typical deformation texture components (S, Copper and Brass) were enhanced up to six ARB cycles and then only Copper was further strengthened. At higher cycles a higher Copper concentration was found near sample surface than the interiors due to a high frictional shear of ARB processing.


1996 ◽  
Vol 2 (3) ◽  
pp. 113-128 ◽  
Author(s):  
Sundar Ramamurthy ◽  
Michael P. Mallamaci ◽  
Catherine M. Zimmerman ◽  
C. Barry Carter ◽  
Peter R. Duncombe ◽  
...  

Dense, polycrystalline MgO was infiltrated with monticellite (CaMgSiO4) liquid to study the penetration of liquid along the grain boundaries of MgO. Grain growth was found to be restricted with increasing amounts of liquid. The inter-granular regions were generally found to be comprised of a two-phase mixture: crystalline monticellite and a glassy phase rich in the impurities present in the starting MgO material. MgO grains act as seeding agents for the crystallization of monticellite. The location and composition of the glassy phase with respect to the MgO grains emphasizes the role of intergranular liquid during the devitrification process in “snowplowing” impurities present in the matrix.


2013 ◽  
Vol 58 (1) ◽  
pp. 145-150 ◽  
Author(s):  
H. Paul ◽  
P. Uliasz ◽  
M. Miszczyk ◽  
W. Skuza ◽  
T. Knych

The crystal lattice rotations induced by shear bands formation have been examined in order to investigate the influence of grain boundaries on slip propagation and the resulting texture evolution. The issue was analysed on Al-0.23wt.%Zr alloy as a representative of face centered cubic metals with medium-to-high stacking fault energy. After solidification, the microstructure of the alloy was composed of flat, twin-oriented, large grains. The samples were cut-off from the as-cast ingot in such a way that the twinning planes were situated almost parallel to the compression plane. The samples were then deformed at 77K in channel-die up to strains of 0.69. To correlate the substructure with the slip patterns, the deformed specimens were examined by SEM equipped with a field emission gun and electron backscattered diffraction facilities. Microtexture measurements showed that strictly defined crystal lattice re-orientations occurred in the sample volumes situated within the area of the broad macroscopic shear bands (MSB), although the grains initially had quite different crystallographic orientations. Independently of the grain orientation, their crystal lattice rotated in such a way that one of the f111g slip planes became nearly parallel to the plane of maximum shear. This facilitates the slip propagation across the grain boundaries along the shear direction without any visible variation in the slip plane. A natural consequence of this rotation is the formation of specific MSB microtextures which facilitates slip propagation across grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document