Influence of the Morphology of Joining on the Heat Transfer Properties of Periodic Metal Hollow Sphere Structures

2007 ◽  
Vol 553 ◽  
pp. 45-50 ◽  
Author(s):  
Thomas Fiedler ◽  
Andreas Öchsner

Hollow sphere structures (HSS) constitute a group of innovative materials which are characterised by more constant material properties compared to classical cellular metals [1]. Their big potential lies within multifunctional applications where combinations of their proper- ties yield symbiotic advantages. In the scope of this paper their effective thermal conductivity is investigated. In addition to the analysis of the dependency of this material parameter on the conductivities of the base materials and the sphere wall thickness, special focus is given to the influence of the morphology of joining.

Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


2009 ◽  
Vol 38 (11) ◽  
pp. 2218-2223 ◽  
Author(s):  
Alex Sandro Campos Maia ◽  
Roberto Gomes da Silva ◽  
João Batista Freire de Souza Junior ◽  
Rosiane Batista da Silva ◽  
Hérica Girlane Tertulino Domingos

The objective of the present study was to assess the effective thermal conductivity of the hair coat (k ef, mW.m-1.K-1) of Holstein cows in a tropical environment, as related to conduction and radiation in the absence of free convection. The average k ef was 49.72 mW.m-1.K-1, about twice the conductivity of the air (26 mW.m-1.K-1) and much less than that of the hair fibres (260 mW.m-1.K-1). The low k ef values were attributed mainly to the small cross area of individual hairs, ρef/ρf (17.2% and 21.3% for black and white hairs, respectively). White coats were denser, with longer hairs and significantly higher k ef (53.15 mW.m-1.K-1) than that of the black hairs (49.25 mW.m-1.K-1). The heritability coefficient of the effective thermal conductivity was calculated as h²=0.18 the possibility was discussed of selecting cattle for increased heat transfer through the hair coat.


Author(s):  
Scott Wrenick ◽  
Paul Sutor ◽  
Harold Pangilinan ◽  
Ernest E. Schwarz

The thermal properties of engine oil are important traits affecting the ability of the oil to transfer heat from the engine. The larger the thermal conductivity and specific heat, the more efficiently the oil will transfer heat. In this work, we measured the thermal conductivity and specific heat of a conventional mineral oil-based diesel engine lubricant and a Group V-based LHR diesel engine lubricant as a function of temperature. We also measured the specific heat of ethylene glycol. The measured values are compared with manufacturers’ data for typical heat transfer fluids. The Group V-based engine oil had a higher thermal conductivity and slightly lower specific heat than the mineral oil-based engine oil. Both engine oils had values comparable to high-temperature heat transfer fluids.


2019 ◽  
Vol 141 (1) ◽  
Author(s):  
Yuntao Cui ◽  
Yujie Ding ◽  
Shuo Xu ◽  
Yushu Wang ◽  
Wei Rao ◽  
...  

Gallium-based liquid metal (LM) inherits excellent thermophysical properties and pollution-free characteristics. However, it has long been a fatal problem that LM would cause serious corrosion and embrittlement on the classical substrate made of aluminum alloys in constructing chip cooling device. Here, anodic oxidation treatment was introduced on processing the aluminum alloy aiming to tackle the corrosion issues. The prepared anodic oxidation aluminum (AAO) coatings were composed of nanopore layers and barrier layers on a high-purity alumina matrix that were manufactured electrochemically. According to the measurement, the effective thermal conductivity of the anodized aluminum alloy increases with the total thickness of sample increasing. When the total thickness L exceeds 5 × 10−3 m, effects of the porous media on effective thermal conductivity are negligible via model simulation and calculation. It was experimentally found that aluminum alloy after surface anodization treatment presented excellent corrosion resistance and outstanding heat transfer performance even when exposed in eutectic gallium–indium (E-GaIn) LM over 200 °C. The convective heat transfer coefficient of LM for anodized sample reached the peak when the heat load is 33.3 W.


2021 ◽  
Vol 10 (4) ◽  
pp. 463-477
Author(s):  
Eyad M. Hamad ◽  
Aseel Khaffaf ◽  
Omar Yasin ◽  
Ziad Abu El-Rub ◽  
Samer Al-Gharabli ◽  
...  

Numerous researchers have reported significant improvements in nanofluid (NF) heat transfer (HT), suspension stability, thermal conductivity (TC), and rheological and mass transfer properties. As a result, nanofluids (NFs) play an important role in a variety of applications, including the health and biomedical engineering industries. The majority of the nanofluids (NFs) literature focuses on analyzing and comprehending the behavior of nanofluid models as heating or cooling mechanisms in various fields. This article represents a comprehensive study on nanofluids (NFs). It involves commonly used nanoparticles (NPs), magnetic nanofluids (MNFs), thermal conductivity (TC) enhancement, heat transfer (HT) enhancement, nanofluids (NFs) synthesis methods, stability evaluation methods, stability enhancement, nanofluids (NFs) applications in the biomedical field, and their impact on health and the environment. Nanofluids (NFs) play vital role in biomedical applications. It can be implemented in drug delivery systems, hyperthermia, sterilization processes, bioimaging, lubrication of orthopedic implants, and micro-pumping systems for drugs and hormones.


2016 ◽  
Vol 846 ◽  
pp. 500-505
Author(s):  
Wei Jing Dai ◽  
Yi Xiang Gan ◽  
Dorian Hanaor

Effective thermal conductivity is an important property of granular materials in engineering applications and industrial processes, including the blending and mixing of powders, sintering of ceramics and refractory metals, and electrochemical interactions in fuel cells and Li-ion batteries. The thermo-mechanical properties of granular materials with macroscopic particle sizes (above 1 mm) have been investigated experimentally and theoretically, but knowledge remains limited for materials consisting of micro/nanosized grains. In this work we study the effective thermal conductivity of micro/nanopowders under varying conditions of mechanical stress and gas pressure via the discrete thermal resistance method. In this proposed method, a unit cell of contact structure is regarded as one thermal resistor. Thermal transport between two contacting particles and through the gas phase (including conduction in the gas phase and heat transfer of solid-gas interfaces) are the main mechanisms. Due to the small size of particles, the gas phase is limited to a small volume and a simplified gas heat transfer model is applied considering the Knudsen number. During loading, changes in the gas volume and the contact area between particles are simulated by the finite element method. The thermal resistance of one contact unit is calculated through the combination of the heat transfer mechanisms. A simplified relationship between effective thermal conductivity and loading pressure can be obtained by integrating the contact units of the compacted powders.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Swaren Bedarkar ◽  
Nurni Neelakantan Viswanathan ◽  
Nidambur Bharatha Ballal

Heat transfer in packed beds and their thermal response have been of great interest for scientists and engineers for the last several years, since they play a crucial role in determining design and operation of reactors. Heat transfer of a packed bed is characterised through lumped parameter, namely, effective thermal conductivity. In the present studies, experiments were performed to investigate the thermal conductivity of a packed bed in radial direction. The packed bed was formed using iron ore particles. To determine the effective thermal conductivity a new transient methodology is proposed. The results obtained were compared with the models proposed by ZBS and Kunii and Smith.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1081 ◽  
Author(s):  
Julian Jepsen ◽  
Chiara Milanese ◽  
Julián Puszkiel ◽  
Alessandro Girella ◽  
Benedetto Schiavo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document