Heat Transfer Properties of Engine Oils

Author(s):  
Scott Wrenick ◽  
Paul Sutor ◽  
Harold Pangilinan ◽  
Ernest E. Schwarz

The thermal properties of engine oil are important traits affecting the ability of the oil to transfer heat from the engine. The larger the thermal conductivity and specific heat, the more efficiently the oil will transfer heat. In this work, we measured the thermal conductivity and specific heat of a conventional mineral oil-based diesel engine lubricant and a Group V-based LHR diesel engine lubricant as a function of temperature. We also measured the specific heat of ethylene glycol. The measured values are compared with manufacturers’ data for typical heat transfer fluids. The Group V-based engine oil had a higher thermal conductivity and slightly lower specific heat than the mineral oil-based engine oil. Both engine oils had values comparable to high-temperature heat transfer fluids.

Author(s):  
Baotong Hao ◽  
Baolin Liu

Vitrification is an effective way for the cryopreservation of cells and tissues. The critical cooling rates for vitrification solution are relatively high. It is reported that nanoparticles can improve the heat transfer properties of solutions. To increase the heat transfer coefficient of aqueous cryoprotectant solutions, Hydroxyapatite (HA) nanoparticles were added into Polyvinylpyrrolidone (PVP) solutions (50%, 55%, and 60%, w/w). The glass-transition temperature, devitrification temperature, and specific heat of PVP aqueous solutions with/without HA nanoparticles (0.1%, 0.5%, and 1%, w/w) were measured by a differential scanning calorimeter at a cooling rate of 20°C/min and a warming rate of 10°C/min. The change in density of the above solutions with temperature was determined by using a straw that can reveal the volume change of solutions. The thermal conductivity was calculated based on the experimental data. A device that can be used to measure the thermal conductivity of vitrification solutions with/without nanoparticles was developed in this study. The results showed that the glass-transition temperature, devitrification temperature, and specific heat of PVP aqueous solutions with HA nanoparticles are larger than those without HA nanoparticles. The thermal conductivity of solutions with HA nanoparticles is larger than those without HA nanoparticles at a specific temperature. The lower the temperature, the smaller the difference in thermal conductivity between the solutions with and without HA nanoparticles. The calculated thermal conductivity meets the measured data well.


2007 ◽  
Vol 455 (1-2) ◽  
pp. 66-69 ◽  
Author(s):  
Dae-Hwang Yoo ◽  
K.S. Hong ◽  
Ho-Soon Yang

2018 ◽  
Vol 7 (4.3) ◽  
pp. 47
Author(s):  
Andrii Кravets ◽  
Andrii Yеvtushenko ◽  
Andrii Pogrebnyak ◽  
Yevhenii Romanovych ◽  
Heorhii Afanasov

It was suggested to use group D engine oil with advanced properties instead of group V and G engine oils, which are used in locomotive diesel engines today, to improve the performance of the Ukrainian locomotive fleet of railways.A series of comparative laboratory studies of these oil groups was conducted to substantiate this suggestion which proved better lubrication and tribological performance of group D engine oil and allowed its performance tests.Tests conducted on diesel 5D49 for mileage of more then 100,000 km have demonstrated the advantages of group D oils, such as more stable viscosity, neutralizing ,washing and other properties. Studies on the four-ball wear test machine proved better anti-wear, anti-scoring and anti-friction properties of group D engine oil, which appear even after the continuous use of oils in locomotive diesels. Decrease in burning loss of engine oil was recorded, resulting in the decrease of oil fuel consumption for group D by 30-60% vs. the group G oil.According to the results of performance tests, group D engine oil has been recommended for the use in 5D49 locomotive diesels and some advice on its future implementation have been provided.  


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3153
Author(s):  
Nidal H. Abu-Hamdeh ◽  
Abdulmalik A. Aljinaidi ◽  
Mohamed A. Eltaher ◽  
Khalid H. Almitani ◽  
Khaled A. Alnefaie ◽  
...  

The current article presents the entropy formation and heat transfer of the steady Prandtl-Eyring nanofluids (P-ENF). Heat transfer and flow of P-ENF are analyzed when nanofluid is passed to the hot and slippery surface. The study also investigates the effects of radiative heat flux, variable thermal conductivity, the material’s porosity, and the morphologies of nano-solid particles. Flow equations are defined utilizing partial differential equations (PDEs). Necessary transformations are employed to convert the formulae into ordinary differential equations. The implicit finite difference method (I-FDM) is used to find approximate solutions to ordinary differential equations. Two types of nano-solid particles, aluminium oxide (Al2O3) and copper (Cu), are examined using engine oil (EO) as working fluid. Graphical plots are used to depict the crucial outcomes regarding drag force, entropy measurement, temperature, Nusselt number, and flow. According to the study, there is a solid and aggressive increase in the heat transfer rate of P-ENF Cu-EO than Al2O3-EO. An increment in the size of nanoparticles resulted in enhancing the entropy of the model. The Prandtl-Eyring parameter and modified radiative flow show the same impact on the radiative field.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


2021 ◽  
Vol 10 (4) ◽  
pp. 463-477
Author(s):  
Eyad M. Hamad ◽  
Aseel Khaffaf ◽  
Omar Yasin ◽  
Ziad Abu El-Rub ◽  
Samer Al-Gharabli ◽  
...  

Numerous researchers have reported significant improvements in nanofluid (NF) heat transfer (HT), suspension stability, thermal conductivity (TC), and rheological and mass transfer properties. As a result, nanofluids (NFs) play an important role in a variety of applications, including the health and biomedical engineering industries. The majority of the nanofluids (NFs) literature focuses on analyzing and comprehending the behavior of nanofluid models as heating or cooling mechanisms in various fields. This article represents a comprehensive study on nanofluids (NFs). It involves commonly used nanoparticles (NPs), magnetic nanofluids (MNFs), thermal conductivity (TC) enhancement, heat transfer (HT) enhancement, nanofluids (NFs) synthesis methods, stability evaluation methods, stability enhancement, nanofluids (NFs) applications in the biomedical field, and their impact on health and the environment. Nanofluids (NFs) play vital role in biomedical applications. It can be implemented in drug delivery systems, hyperthermia, sterilization processes, bioimaging, lubrication of orthopedic implants, and micro-pumping systems for drugs and hormones.


Author(s):  
Aditya Kuchibhotla ◽  
Debjyoti Banerjee

Stable homogeneous colloidal suspensions of nanoparticles in a liquid solvents are termed as nanofluids. In this review the results for the forced convection heat transfer of nanofluids are gleaned from the literature reports. This study attempts to evaluate the experimental data in the literature for the efficacy of employing nanofluids as heat transfer fluids (HTF) and for Thermal Energy Storage (TES). The efficacy of nanofluids for improving the performance of compact heat exchangers were also explored. In addition to thermal conductivity and specific heat capacity the rheological behavior of nanofluids also play a significant role for various applications. The material properties of nanofluids are highly sensitive to small variations in synthesis protocols. Hence the scope of this review encompassed various sub-topics including: synthesis protocols for nanofluids, materials characterization, thermo-physical properties (thermal conductivity, viscosity, specific heat capacity), pressure drop and heat transfer coefficients under forced convection conditions. The measured values of heat transfer coefficient of the nanofluids varies with testing configuration i.e. flow regime, boundary condition and geometry. Furthermore, a review of the reported results on the effects of particle concentration, size, temperature is presented in this study. A brief discussion on the pros and cons of various models in the literature is also performed — especially pertaining to the reports on the anomalous enhancement in heat transfer coefficient of nanofluids. Furthermore, the experimental data in the literature indicate that the enhancement observed in heat transfer coefficient is incongruous compared to the level of thermal conductivity enhancement obtained in these studies. Plausible explanations for this incongruous behavior is explored in this review. A brief discussion on the applicability of conventional single phase convection correlations based on Newtonian rheological models for predicting the heat transfer characteristics of the nanofluids is also explored in this review (especially considering that nanofluids often display non-Newtonian rheology). Validity of various correlations reported in the literature that were developed from experiments, is also explored in this review. These comparisons were performed as a function of various parameters, such as, for the same mass flow rate, Reynolds number, mass averaged velocity and pumping power.


2014 ◽  
Vol 66 (2) ◽  
pp. 238-243 ◽  
Author(s):  
Ayush Jain ◽  
Imbesat Hassan Rizvi ◽  
Subrata Kumar Ghosh ◽  
P.S. Mukherjee

Purpose – Nanofluids exhibit enhanced heat transfer characteristics and are expected to be the future heat transfer fluids particularly the lubricants and transmission fluids used in heavy machinery. For studying the heat transfer behaviour of the nanofluids, precise values of their thermal conductivity are required. For predicting the correct value of thermal conductivity of a nanofluid, mathematical models are necessary. In this paper, the effective thermal conductivity of various nanofluids has been reported by using both experimental and mathematical modelling. The paper aims to discuss these issues. Design/methodology/approach – Hamilton and Crosser equation was used for predicting the thermal conductivities of nanofluids, and the obtained values were compared with the experimental findings. Nanofluid studied in this paper are Al2O3 in base fluid water, Al2O3 in base fluid ethylene glycol, CuO in base fluid water, CuO in base fluid ethylene glycol, TiO2 in base fluid ethylene glycol. In addition, studies have been made on nanofluids with CuO and Al2O3 in base fluid SAE 30 particularly for heavy machinery applications. Findings – The study shows that increase in thermal conductivity of the nanofluid with particle concentration is in good agreement with that predicted by Hamilton and Crosser at typical lower concentrations. Research limitations/implications – It has been observed that deviation between experimental and theoretical results increases as the volume concentration of nanoparticles increases. Therefore, the mathematical model cannot be used for predicting thermal conductivity at high concentration values. Originality/value – Studies on nanoparticles with a standard mineral oil as base fluid have not been considered extensively as per the previous literatures available.


2020 ◽  
Vol 1002 ◽  
pp. 303-310
Author(s):  
Sudad Issam Younis ◽  
Haqi I. Qatta ◽  
Mohammed Jalal Abdul Razzaq ◽  
Khalid S. Shibib

In this work, an inverse heat transfer analysis was used to determine thermal conductivity and specific heat of tissue using special iteration. A laser with a long wavelength was utilized to impose heat to the tissue. The heat that induced in the sample causes an increase in the temperature of a tissue which is measured by a thermocouple. The readings were used together with that analytically obtained from the solution of the heat equation in an iterative procedure to obtain the thermal properties of tissue. By using this method, accurate thermal conductivity and specific heat of tissue could be obtained. It was found that the maximum error in output result and the error in input data were in the same order and that there was a linear relationship between output and input errors.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1100
Author(s):  
F. Benedict ◽  
Amit Kumar ◽  
K. Kadirgama ◽  
Hussein A. Mohammed ◽  
D. Ramasamy ◽  
...  

Due to the increasing demand in industrial application, nanofluids have attracted the considerable attention of researchers in recent decades. The addition of nanocellulose (CNC) with water (W) and ethylene glycol (EG) to a coolant for a radiator application exhibits beneficial properties to improve the efficiency of the radiator. The focus of the present work was to investigate the performance of mono or hybrid metal oxide such as Al2O3 and TiO2 with or without plant base-extracted CNC with varying concentrations as a better heat transfer nanofluid in comparison to distilled water as a radiator coolant. The CNC is dispersed in the base fluid of EG and W with a 60:40 ratio. The highest absorption peak was noticed at 0.9% volume concentration of TiO2, Al2O3, CNC, Al2O3/TiO2, and Al2O3/CNC nanofluids which indicates a better stability of the nanofluids’ suspension. Better thermal conductivity improvement was observed for the Al2O3 nanofluids in all mono nanofluids followed by the CNC and TiO2 nanofluids, respectively. The thermal conductivity of the Al2O3/CNC hybrid nanofluids with 0.9% volume concentration was found to be superior than that of the Al2O3/TiO2 hybrid nanofluids. Al2O3/CNC hybrid nanofluid dominates over other mono and hybrid nanofluids in terms of viscosity at all volume concentrations. CNC nanofluids (all volume concentrations) exhibited the highest specific heat capacity than other mono nanofluids. Additionally, in both hybrid nanofluids, Al2O3/CNC showed the lowest specific heat capacity. The optimized volume concentration from the statistical analytical tool was found to be 0.5%. The experimental results show that the heat transfer coefficient, convective heat transfer, Reynolds number and the Nusselt number have a proportional relationship with the volumetric flow rate. Hybrid nanofluids exhibit better thermal conductivity than mono nanofluids. For instance, a better thermal conductivity improvement was shown by the mono Al2O3 nanofluids than the CNC and TiO2 nanofluids. On the other hand, superior thermal conductivity was observed for the Al2O3/CNC hybrid nanofluids compared to the other mono and hybrid ones (Al2O3/TiO2).


Sign in / Sign up

Export Citation Format

Share Document