Properties of TiN Coatings Deposited on Nitrogen Ion Implanted Steel C1045

2007 ◽  
Vol 555 ◽  
pp. 59-64
Author(s):  
D. Peruško ◽  
N. Bibić ◽  
S. Petrović ◽  
M. Popović ◽  
M. Novaković ◽  
...  

The effects of nitrogen pre-implantation of AISI C1045 steel substrates on the properties of deposited TiN coatings were investigated. Nitrogen ion implantations were performed at 40 keV, to the fluences from 5x1016 – 5x1017 ions/cm2. On so prepared substrates we deposited 1.3 μm thick TiN layers by reactive sputtering. Structural characterizations of the samples were performed by grazing incidence X-ray diffraction analysis (GXRD), standard X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM). Microhardness was measured by Vicker’s method. The obtained results indicate the formation of iron-nitrides in the near surface region of the substrates, more pronounced for higher implanted fluences. The structure of the deposited TiN coatings shows a strong dependence on the pre-implantation of the substrates, which is attributed to the changed local structure at the surface. Ion implantation and deposition of hard TiN coatings induce an increase of the microhardness of this low performance steel of more than eight times.

2001 ◽  
Vol 34 (4) ◽  
pp. 427-435 ◽  
Author(s):  
S. J. Skrzypek ◽  
A. Baczmański ◽  
W. Ratuszek ◽  
E. Kusior

A new development in the determination of residual stresses in thin surface layers and coatings is presented. The procedure, based on the grazing-incidence X-ray diffraction geometry (referred to here as the `g-sin2 ψ' geometry), enables non-destructive measurement at a chosen depth below the sample surface. The penetration depth of the X-ray radiation is well defined and does not change during the experiment. The method is particularly useful for the analysis of non-uniform stresses in near-surface layers. The g-sin2 ψ geometry was applied for measurements of the residual stresses in TiN coatings. Anisotropic diffraction elastic constants of textured material were used to determine the stress value from the measured lattice strains. A new method of data treatment enables reference-free measurements of residual stresses.


2003 ◽  
Vol 18 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Maxim B. Kelman ◽  
Paul C. McIntyre ◽  
Bryan C. Hendrix ◽  
Steven M. Bilodeau ◽  
Jeffrey F. Roeder ◽  
...  

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 427 ◽  
Author(s):  
Jie Jin ◽  
Wei Wang ◽  
Xinchun Chen

In this study, Ti + N ion implantation was used as a surface modification method for surface hardening and friction-reducing properties of Cronidur30 bearing steel. The structural modification and newly-formed ceramic phases induced by the ion implantation processes were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXRD). The mechanical properties of the samples were tested by nanoindentation and friction experiments. The surface nanohardness was also improved significantly, changing from ~10.5 GPa (pristine substrate) to ~14.2 GPa (Ti + N implanted sample). The friction coefficient of Ti + N ion implanted samples was greatly reduced before failure, which is less than one third of pristine samples. Furthermore, the TEM analyses confirmed a trilamellar structure at the near-surface region, in which amorphous/ceramic nanocrystalline phases were embedded into the implanted layers. The combined structural modification and hardening ceramic phases played a crucial role in improving surface properties, and the variations in these two factors determined the differences in the mechanical properties of the samples.


1997 ◽  
Vol 358 (1-2) ◽  
pp. 333-334 ◽  
Author(s):  
J. Neuhäuser ◽  
G. Treffer ◽  
H. Plänitz ◽  
W. Wagner ◽  
G. Marx

2007 ◽  
Vol 22 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jianfeng Fang ◽  
Jing Huo ◽  
Jinyuan Zhang ◽  
Yi Zheng

The structure of a chemical-vapor-deposited (CVD) diamond thin film on a Mo substrate was studied using quasi-parallel X-ray and glancing incidence techniques. Conventional X-ray diffraction analysis revealed that the sample consists of a diamond thin film, a Mo2C transition layer, and Mo substrate. The Mo2C transition layer was formed by a chemical reaction between the diamond film and the Mo substrate during the CVD process. A method for layer-thickness determination of the thin film and the transition layer was developed. This method was based on a relationship between X-ray diffraction intensities from the transition layer or its substrate and a function of grazing incidence angles. Results of glancing incidence X-ray diffraction analysis showed that thicknesses of the diamond thin film and the Mo2C transition layer were determined successfully with high precision.


1993 ◽  
Vol 324 ◽  
Author(s):  
Victor S. Wang ◽  
Richard J. Matyi ◽  
Karen J. Nordheden

AbstractTriple crystal x-ray diffraction (TCXD) is a non-destructive structural characterization tool capable of the separation and direct observation of the dynamic (perfect crystal) and the kinematic (imperfect crystal) components of the total intensity diffracted by a crystal. Specifically, TCXD can be used to measure the magnitude of the diffuse scattering arising from defects in the crystal structure in the immediate vicinity of a reciprocal lattice point. In this study, the effects of BC13 reactive ion etching (RIE) on the near-surface region of GaAs were investigated by analyzing the changes in the diffuse scattering using both the symmetric 004 reflection as well as the highly asymmetric and more surface sensitive 113 reflection. While the results from the 004 reflections revealed little difference between the unetched and the BC13-etched samples, maps of the diffracted intensity around the 113 reflections showed an unexpected and reproducible decrease in the extent of the diffuse scattering in the transverse direction (perpendicular to the < 113 > direction) as the RIE bias voltage was increased. This decrease suggests that the degree of etch damage induced in the GaAs near-surface region is reduced with increasing bias voltage and ion energy. Additionally, the symmetry and orientation of the kinematic scattering was altered. Possible mechanisms for these results willbe discussed.


2002 ◽  
Vol 753 ◽  
Author(s):  
D. Y. Lee ◽  
M. L. Santella ◽  
I. M. Anderson ◽  
G. M. Pharr

ABSTRACTSpecimens of the cast Ni3Al alloy IC221M were annealed in air at 900°C to examine the effects of oxidation and thermal aging on the microstructure. The alloy is comprised of a dendritically solidified γ-γ′ matrix containing γ+Ni5Zr eutectic colonies in the interdendritic regions. Microstructures of aged specimens were examined by optical microscopy and energy dispersive X-ray (EDX) spectrum imaging in the scanning electron microscope (SEM). Two primary changes in the microstructures were observed: (1) there is considerable homogenization of the cast microstructures with aging, and (2) the volume fraction of the γ+Ni5Zr eutectic decreases. Oxidation products were identified using x-ray diffraction and EDX spectrum imaging with multivariate statistical analysis (MSA). During the initial stages of oxidation, the first surface oxide to form is mostly NiO with small amounts of Cr2O3, ZrO2, NiCr2O4, and θ-Al2O3. Initially, oxidation occurs primarily in the interdendritic regions due to microsegregation of alloying elements during casting. With further aging, a continuous film of α-Al2O3 forms immediately beneath the surface that eventually evolves into a double layer of α-Al2O3 and NiAl2O4. Although these oxides are constrained to the near surface region, others penetrate to greater depths facilitated by oxidation of the γ+Ni5Zr eutectic colonies. These oxides appear in the microstructure as long, thin spikes of ZrO2 surrounded by a thin sheath of Al2O3.


2013 ◽  
Vol 530 ◽  
pp. 105-112 ◽  
Author(s):  
David Rafaja ◽  
Christina Krbetschek ◽  
Daria Borisova ◽  
Gerhard Schreiber ◽  
Volker Klemm

1986 ◽  
Vol 78 ◽  
Author(s):  
Franz Reidinger ◽  
Philip J. Whalen

ABSTRACTThe phase composition of Y-TZP surfaces has been shown to vary greatly depending on the thermo-mechanical history of the surface. The orientation of these different phases in the surface region is not always random. There is speculation that the alignment of the tetragonal phase before fracturing may play a part in increasing the toughness of these materials. This article deals with an X-ray diffraction analysis of various Y-TZP surfaces with special emphasis on the texture of the different phases. Surfaces which have been ground (and polished), fractured, and aged (200°C) have been examined. In all cases, the monoclinic component that was formed was strongly oriented. The tetragonal phase may or may not be oriented depending on surface treatment. Annealing above the monoclinic-tetragonal transition temperature had little effect on the tetragonal orientation in most cases. Samples fractured at 1000°C have no unusual orientation on the fracture faces.


Sign in / Sign up

Export Citation Format

Share Document