Reliability of SiC Power Devices Against Cosmic Radiation-Induced Failure

2007 ◽  
Vol 556-557 ◽  
pp. 851-856 ◽  
Author(s):  
Gerald Soelkner ◽  
Winfried Kaindl ◽  
Michael Treu ◽  
Dethard Peters

Cosmic radiation has been identified as a decisive factor for power device reliability. Energetic neutrons create ionizing recoils within the semiconductor substrate which may lead to device burnout. While this failure mode has gained widespread acceptance for power devices based on silicon the question whether a similar mechanism could also lead to failure of SiC devices was left to be debated. Radiation hardness intrinsic to the SiC material was generally assumed but as experimental data was scarce reliability problems due to radiation-induced device failure could not be ruled out. Recent accelerated testing results now show that cosmic radiation will indeed affect the reliability of SiC power devices, as it is the case for its silicon counterpart, but the problem can be contained very effectively by device design.

2018 ◽  
Vol 924 ◽  
pp. 137-142 ◽  
Author(s):  
Edward van Brunt ◽  
Albert Burk ◽  
Daniel J. Lichtenwalner ◽  
Robert Leonard ◽  
Shadi Sabri ◽  
...  

This work explores the effects of extended epitaxial defects on 4H-SiC power devices. Advanced defect mapping techniques were used on large quantities of power device wafers, and data was aggregated to correlate device electrical characteristics to defect content. 1200 V class Junction Barrier Schottky (JBS) diodes and MOSFETs were examined in this manner; higher voltage 3.3 kV class devices were examined as well. 3C inclusions and triangular defects, as well as heavily decorated substrate scratches, were found to be device killing defects. Other defects were found to have negligible impacts on device yield, even in the case of extremely high threading dislocation content. Defect impacts on device reliability was explored on MOS-gate structures, as well as long-term device blocking tests on both MOSFETs and JBS diodes. Devices that passed on-wafer electrical parametric tests were found to operate reliably in these tests, regardless of defect content.


2012 ◽  
Vol 518-523 ◽  
pp. 3768-3771
Author(s):  
Zhi Yong Xie ◽  
Qi Dou Zhou ◽  
Gang Ji

The exciting force’s accurate measurement of is crucial to the structure-born sound radiation. Forced vibration and sound radiation of the ribbed cylinder is examined in the anechoic room. An approach called added mass and damping method is proposed to calculate the elastic vibration and acoustic field of the cylinder. Results obtained from simulation are show to be in good agreement with the experimental data. Sound radiation induced by different input loading form is examined via simulation and experiment. And the equipollence of force and pressure acting on the base is validated.


2020 ◽  
Author(s):  
Eloise Pariset ◽  
Ianik Plante ◽  
Artem L. Ponomarev ◽  
Louise Viger ◽  
Trevor Evain ◽  
...  

ABSTRACTCosmic radiation, composed of high charged and energy (HZE) particles, causes cell death and mutations that can subsequently lead to cancers. Radiation-mediated mutations are induced by inter- and intra-chromosomal rearrangements (translocations, deletions, inversions) that are triggered by misrepaired DNA breaks, especially double-strand breaks (DSBs). In this work, we introduce a new model to predict radiation-mediated induction of cell death and mutation in two different cell lines across a large range of linear energy transfer (LET) values, based on the assumption that DSBs cluster into repair domains, as previously suggested by our group. Specifically, we propose that the probabilities of cell survival and cell mutation can be determined from the number of DSBs and the number of pairwise DSB interactions forming radiation-induced foci. We computed the distribution and locations of DSBs with the new simulation code RITCARD (relativistic ion tracks, chromosome aberrations, repair, and damage) and combined them with experimental data from HF19 human fibroblasts and V79 Chinese hamster cells to derive the parameters of our model and expand its predictions to the relative biological effectiveness (RBE) for cell survival and mutation in both cell lines in response to 9 different irradiation particles and energies ranging from 10 to 1,600 MeV/n. Our model generates the correct bell shape of LET dependence for RBE, as well as similar RBE values as experimental data, notably including data that were not used to set the model parameters. Interestingly, our results also suggest that cell orientation (parallel or perpendicular) with respect to the HZE beam can modulate the RBE for both cell death and mutation frequency. Cell orientation effects, if confirmed experimentally, would be another strong piece of evidence for the existence of DNA repair domains and their critical role in interpreting cellular sensitivity to cosmic radiation and hadron therapy.AUTHOR SUMMARYOne of the main hazards of human spaceflight beyond low Earth orbit is space radiation exposure. Galactic cosmic rays (GCRs), in particular their high-charge and high-energy particle component, induce a unique spatial distribution of DNA double strand breaks in the nucleus along their traversal in the cell [1], which result in significantly higher cancer risk than X-rays [2]. To mitigate this hazard, there is a significant need to better understand and predict the effects of cosmic radiation exposure at the cellular level. We have computationally predicted two biological endpoints – cell survival and probability of mutations, critical for cancer induction mechanisms – for the full spectrum of cosmic radiation types and energies, by modeling the distribution of DNA damage locations within the cell nucleus. From experimental results of cell survival and mutation probability in two standard cell lines, we were able to derive the parameters of the model for multiple radiation qualities, both biological endpoints, and two irradiation orientations. The model was validated against biological data and showed high predictive capability on data not used for tuning the model. Overall, this work opens new perspectives to predict multiple responses to cosmic radiation, even with limited experimental data available.


2015 ◽  
Vol 15 (4) ◽  
pp. 552-558 ◽  
Author(s):  
Neal Mielke ◽  
Kodie Goodwin ◽  
Rory Harris ◽  
Arbin Kumar ◽  
Eric Lin ◽  
...  

1987 ◽  
Vol 109 (2) ◽  
pp. 427-433 ◽  
Author(s):  
B. W. Webb ◽  
R. Viskanta

Experiments have been performed to study the rate of internal radiative heating on the natural convective motion in a vertical rectangular enclosure irradiated from the side. A Mach–Zehnder interferometer has been used to determine the temperature field, and a fluorescing dye injection technique was employed to illustrate the flow structure with water as the working fluid. A theoretical model is developed for predicting the absorption of thermal radiation and the subsequent buoyancy-driven flow. Predictions based on spectral calculations for the radiation flux divergence agree well with the experimental data.


1997 ◽  
Vol 483 ◽  
Author(s):  
T. P. Chow ◽  
N. Ramungul ◽  
M. Ghezzo

AbstractThe present status of high-voltage power semiconductor switching devices is reviewed. The choice and design of device structures are presented. The simulated performance of the key devices in 4H-SiC is described. The progress in high-voltage power device experimental demonstration is described. The material and process technology issues that need to be addressed for device commercialization are discussed.


Sign in / Sign up

Export Citation Format

Share Document