Wide Bandgap Semiconductor Power Devices

1997 ◽  
Vol 483 ◽  
Author(s):  
T. P. Chow ◽  
N. Ramungul ◽  
M. Ghezzo

AbstractThe present status of high-voltage power semiconductor switching devices is reviewed. The choice and design of device structures are presented. The simulated performance of the key devices in 4H-SiC is described. The progress in high-voltage power device experimental demonstration is described. The material and process technology issues that need to be addressed for device commercialization are discussed.

2000 ◽  
Vol 622 ◽  
Author(s):  
T.P. Chow

ABSTRACTThe present status of development of SiC and GaN devices for high-voltage power electronics applications is reviewed. Device structures that are particularly applicable to these two wide bandgap semiconductors are considered and compared to those commonly used in silicon. The simulated and experimental performance of two-terminal rectifiers and three- terminal transistors and thyristors are compared. The effects of material parameters (mobility, ionization coefficients, lifetimes) and defects on device characteristics are pointed out. Similarities and differences between electronic and photonic device development in these semiconductors are discussed.


2018 ◽  
Vol 201 ◽  
pp. 02004
Author(s):  
Shao-Ming Yang ◽  
Gene Sheu ◽  
Tzu Chieh Lee ◽  
Ting Yao Chien ◽  
Chieh Chih Wu ◽  
...  

High performance power device is necessary for BCD power device. In this paper, we used 3D Synopsis TCAD simulation tool Sentaurus to develop 120V device and successfully simulated. We implemented in a conventional 0.35um BCDMOS process to present of a novel high side 120V LDMOS have reduced surface field (RESURF) and Liner p-top structure with side isolation technology. The device has been research to achieve a benchmark specific on-resistance of 189 mΩ-mm2 while maintaining horizontal breakdown voltage and vertical isolation voltage both to target breakdown voltage of 120V. In ESOA, we also proposed a better performance of both device without kirk effect.


1999 ◽  
Vol 595 ◽  
Author(s):  
Qiang Zhao ◽  
Michael Lukitsch ◽  
Jie Xu ◽  
Gregory Auner ◽  
Ratna Niak ◽  
...  

AbstractExcimer laser ablation rates of Si (111) and AlN films grown on Si (111) and r-plane sapphire substrates were determined. Linear dependence of ablation rate of Si (111) substrate, sapphire and AlN thin films were observed. Excimer laser micromachining of the AlN thin films on silicon (111) and SiC substrates were micromachined to fabricate a waveguide structure and a pixilated structure. This technique resulted in clean precise machining of AlN with high aspect ratios and straight walls.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000359-000364 ◽  
Author(s):  
Adam Morgan ◽  
Ankan De ◽  
Haotao Ke ◽  
Xin Zhao ◽  
Kasunaidu Vechalapu ◽  
...  

The main motivation of this work is to design, fabricate, test, and compare an alternative, robust packaging approach for a power semiconductor current switch. Packaging a high voltage power semiconductor current switch into a single power module, compared to using separate power modules, offers cost, performance, and reliability advantages. With the advent of Wide-Bandgap (WBG) semiconductors, such as Silicon-Carbide, singular power electronic devices, where a device is denoted as a single transistor or rectifier unit on a chip, can now operate beyond 10kV–15kV levels and switch at frequencies within the kHz range. The improved voltage blocking capability reduces the number of series connected devices within the circuit, but challenges power module designers to create packages capable of managing the electrical, mechanical, and thermal stresses produced during operation. The non-sinusoidal nature of this stress punctuated with extremely fast changes in voltage and current, with respect to time, leads to non-ideal electrical and thermal performance. An optimized power semiconductor series current switch is fabricated using an IGBT (6500V/25A die) and SiC JBS Diode (6000V/10A), packaged into a 3D printed housing, to create a composite series current switch package (CSCSP). The final chosen device configuration was simulated and verified in an ANSYS software package. Also, the thermal behavior of such a composite package was simulated and verified using COMSOL. The simulated results were then compared with empirically obtained data, in order to ensure that the thermal ratings of the power devices were not exceeded; directly affecting the maximum attainable frequency of operation for the CSCSP. Both power semiconductor series current switch designs are tested and characterized under hard switching conditions. Special attention is given to ensure the voltage stress across the devices is significantly reduced.


1997 ◽  
Vol 483 ◽  
Author(s):  
C. E. Weitzel ◽  
K. E. Moore

AbstractImpressive RF power performance has been demonstrated by three radically different wide bandgap semiconductor power devices, SiC MESFET's, SiC SIT's, and AlGaN HFET's. AlGaN HFET's have achieved the highest fmax 97 GHz. 4H-SiC MESFET's have achieved the highest power densities, 3.3 W/mm at 850 MHz (CW) and at 10 GHz (pulsed). 4H-SiC SIT's have achieved the highest output power, 450 W (pulsed) at 600 MHz and 38 W (pulsed) at 3 GHz. Moreover a one kilowatt, 600 MHz SiC power module containing four multi-cell SIT's with a total source periphery of 94.5 cm has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document