Structure and Properties of PM Nano-Crystalline Al-Cr based Alloys

2007 ◽  
Vol 567-568 ◽  
pp. 197-200
Author(s):  
Dalibor Vojtěch ◽  
Alena Michalcová ◽  
Jan Verner ◽  
Jan Šerák ◽  
František Šimančík ◽  
...  

In the presented paper, properties of Al-Cr-Fe-Ti alloy produced by powder metallurgy (PM) are described. Rapidly solidified powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 μm was then hot-extruded. Microstructure of the as-extruded material comprised recrystallized α-Al grains and spheroids of intermetallic phases. Tensile strength of the investigated material was similar to that of a conventional casting Al-Si alloy commonly used in elevated temperature applications. Excellent thermal stability of the PM Al-Cr based material, which much exceeded the elevated temperature casting alloy, was proved by room temperature tensile tests after long-term annealing at elevated temperature. Reasons for the observed thermal stability of the investigated PM alloy are discussed.

2018 ◽  
Vol 24 (3) ◽  
pp. 223 ◽  
Author(s):  
Andrea Školáková ◽  
Petra Hanusová ◽  
Filip Průša ◽  
Pavel Salvetr ◽  
Pavel Novák ◽  
...  

<p>In this work, Al-11Fe, Al-7Fe-4Ni and Al-7Fe-4Cr (in wt. %) alloys were prepared by combination of casting and hot extrusion. Microstructures of as-cast alloys were composed of aluminium matrix with large and coarse intermetallics such as Al<sub>13</sub>Fe<sub>4</sub>, Al<sub>13</sub>Cr<sub>2</sub> and Al<sub>5</sub>Cr. Subsequently, as-cast alloys were rapidly solidified by melt-spinning technique which led to the supersaturation of solid solution alloying elements. These rapidly solidified ribbons were milled and compacted by hot-extrusion method. Hot-extrusion caused that microstructures of all alloys were fine with uniform dispersed particles. Moreover, long-term thermal stability was tested at temperature 300 °C for as-cast and hot-extruded alloys and chromium was found to be the most suitable element for alloying to improve thermal stability.    </p>


2015 ◽  
Vol 134 ◽  
pp. 261-267 ◽  
Author(s):  
H.D. Liu ◽  
Q. Wan ◽  
Y.R. Xu ◽  
C. luo ◽  
Y.M. Chen ◽  
...  

2014 ◽  
Vol 782 ◽  
pp. 347-352
Author(s):  
Dalibor Vojtěch ◽  
Karel Dám ◽  
Filip Průša

Combination of centrifugal melt spraying and hot die-forging of a rapidly solidified semi-product was presented as a promising and inexpensive method for processing of aluminium based alloys of unconventional chemical compositions, e.g., those containing high concentrations of thermally stabilizing transition metals. In our study, the use of this processing method is illustrated for the Al–23Si–8Fe–5Mn (wt. %) alloy. Structure was examined by LM, SEM, EDS and XRD. Mechanical properties were determined by hardness and compressive tests. Thermal stability was assessed by measuring the hardness development during long-term annealing, elevated temperature compressive tests and creep tests. The research showed that the investigated alloy exhibits excellent thermal stability as compared with commercial thermally stable aluminium alloys currently used in automotive and aerospace industry.


Author(s):  
Yih-Cheng Shih ◽  
E. L. Wilkie

Tungsten silicides (WSix) have been successfully used as the gate materials in self-aligned GaAs metal-semiconductor-field- effect transistors (MESFET). Thermal stability of the WSix/GaAs Schottky contact is of major concern since the n+ implanted source/drain regions must be annealed at high temperatures (∼ 800°C). WSi0.6 was considered the best composition to achieve good device performance due to its low stress and excellent thermal stability of the WSix/GaAs interface. The film adhesion and the uniformity in barrier heights and ideality factors of the WSi0.6 films have been improved by depositing a thin layer of pure W as the first layer on GaAs prior to WSi0.6 deposition. Recently WSi0.1 has been used successfully as the gate material in 1x10 μm GaAs FET's on the GaAs substrates which were sputter-cleaned prior to deposition. These GaAs FET's exhibited uniform threshold voltages across a 51 mm wafer with good film adhesion after annealing at 800°C for 10 min.


2021 ◽  
Vol 31 (22) ◽  
pp. 2170155
Author(s):  
Herlina Arianita Dewi ◽  
Jia Li ◽  
Hao Wang ◽  
Bhumika Chaudhary ◽  
Nripan Mathews ◽  
...  

2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański ◽  
Ulrich Krupp ◽  
...  

AbstractAdvanced medium-Mn sheet steels show an opportunity for the development of cost-effective and light-weight automotive parts with improved safety and optimized environmental performance. These steels utilize the strain-induced martensitic transformation of metastable retained austenite to improve the strength–ductility balance. The improvement of mechanical performance is related to the tailored thermal and mechanical stabilities of retained austenite. The mechanical stability of retained austenite was estimated in static tensile tests over a wide temperature range from 20 °C to 200 °C. The thermal stability of retained austenite during heating at elevated temperatures was assessed by means of dilatometry. The phase composition and microstructure evolution were investigated by means of scanning electron microscopy, electron backscatter diffraction, X-ray diffraction and transmission electron microscopy techniques. It was shown that the retained austenite stability shows a pronounced temperature dependence and is also stimulated by the manganese addition in a 3–5% range.


2020 ◽  
Vol 32 (7) ◽  
pp. 801-822 ◽  
Author(s):  
John J La Scala ◽  
Greg Yandek ◽  
Jason Lamb ◽  
Craig M Paquette ◽  
William S Eck ◽  
...  

4,4′-Methylenedianiline (MDA) is widely used in high-temperature polyimide resins, including polymerization of monomer reactants-15. The toxicity of MDA significantly limits the manufacturability using this resin. Modifying the substitution and electronics of MDA could allow for the reduction of toxicity while maintaining the high-performing properties of the materials derived from the modified MDA. The addition of a single methyl substituent, methoxy substituent, location of these substituents, and location of the amine relative to the phenolic bridge were modified as were other non-aniline diamines. Various anilines were condensed with paraformaldehyde under acidic conditions to yield dianilines. These dianilines and diamines were reacted with nadic anhydride and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride in methanol to form the polyamic acid oligomers and heated at elevated temperature to form polyimide oligomers. It was found that the molecular weight of the oligomers derived from MDA alternatives was generally lower than that of MDA oligomers resulting in lower glass transition temperatures ( T gs) and degradation temperatures. Additionally, methoxy substituents further reduce the T g of the polymers versus methyl substituents and reduce the thermal stability of the resin. Methyl-substituted alternatives produced polyimides with similar T gs and degradation temperatures. The toxicity of the MDA alternatives was examined. Although a few were identified with reduced toxicities, the alternatives with properties similar to that of MDA also had high toxicities.


Sign in / Sign up

Export Citation Format

Share Document