Study on Mechanical Behavior for Warm Extrusion of AZ61 Magnesium Alloy

2008 ◽  
Vol 575-578 ◽  
pp. 222-225
Author(s):  
Xing Zhang ◽  
Zhi Min Zhang ◽  
Bao Cheng Li

Thermal compression tests of AZ61 magnesium alloy was performed at deformation temperature 150-400°C and strain rates ranged from 0.01s-1 to 10s-1, and the microstructure were observed for deformation specimens. The result shows that dynamic recrystallization (DRX) was happened under the center warm deformation condition for AZ61 alloy. The values of stress peak decrease when the deformation temperature increase, the grain size grows up at the same time. On the other hand, the critical strain increase and the grain size get smaller with the strain ratio increasing. Therefore temperature and strain ratio can make a great effect on the microstructure and mechanical properties of AZ61 alloy, but temperature is a more important factor.

2014 ◽  
Vol 1015 ◽  
pp. 203-206
Author(s):  
Quan Li ◽  
Jin Yang ◽  
Wen Jun Liu ◽  
Su Qin Luo ◽  
Ren Ju Cheng ◽  
...  

Hot compression tests of AZ61 magnesium alloy were performed on gleeble1500D at strain rate ranged in 0.01~1s-1 and deformation temperature 350~400°C.The results show that the flow stress and microstructures strongly depend on the deformation temperature and the strain rate. When the temperature was reduced and the strain rate was enhanced, the area after dynamic recrystallization was enhanced, and the average dynamically recrystallied grain size reduce. But the dynamically recrystallied grain size was not well-proportioned. In this paper the 350°C×1s-1 was suggested.


2006 ◽  
Vol 116-117 ◽  
pp. 639-642 ◽  
Author(s):  
Hong Yan ◽  
Bing Feng Zhou

Uniaxial compression tests on semi-solid AZ61 alloy fabricated by stain-induced activation (SIMA) process and the conventional casts were carried out using the Gleedle-1500 dynamic material testing machine. The relationships between stress and stain were analyzed. The numerical relationships among processing parameters (strain rate z ε& strain z ε temperature T liquid volume fraction L f ) and stress were studied. The proposed constitutive equation was established for semi-solid AZ61 magnesium alloy using the multiple nonlinear regression method. A scientific basic provided for both numerical simulation of processing process of semi- solid AZ61 alloy and rational choice and control of processing parameters.


2013 ◽  
Vol 750-752 ◽  
pp. 574-578
Author(s):  
Zhong Xue Feng ◽  
Qing Nan Shi ◽  
Fu Sheng Pan ◽  
Jun Tan ◽  
Liang Wei Chen ◽  
...  

Thermal compression tests of AZ61 magnesium alloy were performed at deformation temperature 25-400°C with strain rates ranged from 0.02 to 20 s-1, and the microstructure was studied. The conventional dynamic recrystallization (DRX) and shear zones were observed on grain boundaries at temperatures above 200°C. The shear zone and the temperature rise are considered to be responsible for the fracture of specimens. For the large internal stress concentration in the shear zones and the deformation incompatibility between matrix and shear zones, the fracture grew along with the shear zones and the failure occurred in the large deformation field of the matrix at the high strain rate 20 s-1 even at 400°C.


2013 ◽  
Vol 395-396 ◽  
pp. 218-222 ◽  
Author(s):  
Chen Yang Xu ◽  
Fu Xiang Chu ◽  
Xiao Ling Xu ◽  
Hao Chen ◽  
Fang Gao

Microstructure evolution characteristics and the influence of the intial grain size on the dynamic recrystallization of AZ31 were investigated by rolling at deformation temperature of 280 °C, 30% reduction and strain rate of 5.6s-1. The results indicate that under the present deformation condition, when the grain size is 6.2μm the dynamic recrystallization does not occur , twinning dynamic recrystallization (TDRX) occurs when the original grain size are of 7.9μm and 12.7μm, when the original grain size is 21.1μm rotating dynamic recrystallization (RDRX) occurs.


2013 ◽  
Vol 197 ◽  
pp. 232-237 ◽  
Author(s):  
Dariusz Kuc ◽  
Eugeniusz Hadasik

The paper presents a model of microstructure changes elaborated for magnesium alloy type AZ31. In previous papers, the function of flow stress was defined on the basis of uniaxial hot compression tests. On the basis of marked relaxation curves and quantitative tests of structure the softening indicators were defined together with elaboration of equations which describe the changes in the grain size. Marked coefficients of equations were introduced in the code of simulation program. Calculations were conducted for given temperature values from 450 ÷ 250°C and strain rate from 0.01 to 10 s-1, which correspond with rolling temperature range of this alloy. Prepared model will allow the proper choice of parameters in hot rolling process of this alloy to achieve the assumed microstructure.


2014 ◽  
Vol 881-883 ◽  
pp. 1396-1399
Author(s):  
Chen Jun ◽  
Quan An Li

The microstructure and mechanical properties of magnesium alloy AZ61wtih1% Sn addition has been studied in this paper. The results show that the addition of 1% Sn can refine the grain size and improve the microstructure morphology of β-Mg17Al12 phase. The addition of Sn can cause the formation of Mg2Sn phase in AZ61 alloy, which can effectively enhance the mechanical properties of magnesium alloy AZ61 at room temperature and 150°C.


2015 ◽  
Vol 661 ◽  
pp. 105-112
Author(s):  
Yeong Maw Hwang ◽  
Tso Lun Yeh

Material’s plastic deformation by hot forming processes can be used to make the materials generate dynamic recrystallization (DRX) and fine grains and accordingly products with more excellent mechanical properties, such as higher strength and larger elongation can be obtained. In this study, compression tests and water quenching are conducted to obtain the flow stress of the materials and the grain size after DRX. Through the regression analysis, prediction equations for the magnesium alloy microstructure were established. Simulations with different rolling parameters are conducted to find out the relationship between the DRX fractions or grain sizes of the rolled products and the rolling parameters. The simulation results show that rolling temperature of 400°C and thickness reduction of 50% are the optimal conditions. An average grain size of 0.204μm-0.206μm in the microstructure is obtained and the strength and formability of ZK60 magnesium alloys can be improved.


2021 ◽  
Vol 118 (2) ◽  
pp. 202
Author(s):  
Fei Li ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Qing Yang ◽  
Chaoqun Li ◽  
...  

The static recrystallization (SRX) behavior of a low carbon Nb–V–Ti microalloyed steel X70 was investigated by two-pass hot compression tests. The compression tests were carried out at deformation temperatures of 1000–1150 °C, strain rates of 0.01–5 s−1, pre-strains of 0.1–0.2 and interval times of 1–50 s. The effects of deformation parameters on SRX behavior were analyzed. The experimental results showed that deformation temperature, pre-strain and strain rate had significant influence on SRX fraction, while initial grain size had a smaller impact. The effects of deformation parameters on SRX microstructure were discussed, and the microstructure evolution process was analyzed. Higher deformation temperature, strain rate and pre-strain lead to larger SRX fraction. The kinetics and recrystallized grain size models for SRX of X70 pipeline steel were developed. Comparison between the predicted results and the experimental ones indicated that the established equations could give a reasonable description for SRX behavior of X70 pipeline steel.


Sign in / Sign up

Export Citation Format

Share Document