A New Optimization Method of Constitutive Equation for Hot Working Based on Physical Simulation and Numerical Simulation

2008 ◽  
Vol 575-578 ◽  
pp. 402-407 ◽  
Author(s):  
Fu Guo Li ◽  
Xiao Na Wang ◽  
Xiao Lu Yu

This paper advances a new optimization method about material constitutive equation on the basis of physical simulation and numerical simulation results which basic thinking can be described as the following: through comparing the results of the material deformation process under actual experimental conditions and virtually simulated by the finite element numerical simulation method with the constitutive equation established on the basis of the physical simulation, the constitutive equation established by the experimental data is optimized in turn. Based on it, this paper advances a visco/plastic constitutive equation to depict the semi-solid thixo-forming and the constitutive equation is analyzed and optimized through coupling of the physical simulation and numerical simulation. It is observed that this method can effectively eliminate the influence of the factor outside material itself on the constitutive equation. So, it can exactly depict the deformation behavior of the materials and improve the accuracy and reliability of the numerical simulation.

2012 ◽  
Vol 192-193 ◽  
pp. 287-292
Author(s):  
Hong Yan ◽  
Jian Bin Zhu ◽  
Ping Shan

The conventional liquid die casting and rheo-diecasting processes of magnesium matrix composites were studied with the numerical simulation method. The constitutive model of semi-solid Mg2Si/AM60 composite had been established in our prior study. The pressure and the inside defects of the material during rheo-diecasting is realized. The comparison of two forming processes is done. The results indicate that the rheo-diecasting won't lead to interior defects such as gas-hole etc. The simulation results are in accord with the experimental ones.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1053
Author(s):  
Chengmin Chen ◽  
Guangxia Liu ◽  
Lei Zhang ◽  
Guodong Wang ◽  
Yanjin Hou ◽  
...  

In this paper, a transient numerical simulation method is used to investigate the effects of the two furnace configurations on the thermal field: the shape of the melt–crystal (M/C) interface and the thermal stress in the growing multicrystalline ingot. First, four different power ratios (top power to side power) are investigated, and then three positions (i.e., the vertical, angled, and horizontal positions) of the insulation block are compared with the conventional setup. The power ratio simulation results show that with a descending power ratio, the M/C interface becomes flatter and the thermal stress in the solidified ingot is lower. In our cases, a power ratio of 1:3–1:4 is more feasible for high-quality ingot. The block’s position simulation results indicate that the horizontal block can more effectively reduce the radial temperature gradient, resulting in a flatter M/C interface and lower thermal stress.


Author(s):  
Z. Z. Kang ◽  
B. M. Sun ◽  
Y. H. Guo ◽  
W. Zhang ◽  
H. Q. Wei

Numerical simulation method is employed in this article to investigate various high-temperature air direct-ignition processes of pulverized coal (PC). Several important factors are analyzed, which are the inlet velocity of primary air flow, PC concentration and the velocity and temperature of high temperature air. The flow, combustion and heat transfer in high temperature air oil-free ignition burner can also be obtained from the simulation results, which are in accordance with the experimental data. The research provides guidance for structure improvement and operation optimization of burner.


2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


1994 ◽  
Vol 37 (4) ◽  
pp. 21-27
Author(s):  
Guoping Xie ◽  
Yoshihide Suwa

Uniformity of airflow distribution in a unidirectional flow cleanroom has been studied experimentally and numerically. The influence of the height of the plenum chamber and the velocity of airflow introduced into the chamber on the airflow uniformity are investigated experimentally. In addition, a numerical simulation method to predict airflow uniformity is proposed, taking into account the characteristics of the pressure loss of the filter. The calculation domain in this study includes not only the cleanroom but also the plenum chamber and the exhaust chamber. The validity of the numerical method is also verified by comparing the simulation results with the experiments. Finally, the numerical method is used to obtain an appropriate height for the plenum chamber.


2012 ◽  
Vol 217-219 ◽  
pp. 1460-1464 ◽  
Author(s):  
Jing Xie ◽  
Yi Tang ◽  
Jin Feng Wang ◽  
Chen Miao ◽  
Yong Yan Lin

On the basis of previous work, the simulation condition of cold store was improved to reduce calculation error. The SIMPLE algorithm and Boussineq assumption were used and the turbulent intensity was also set. The numerical simulation results reflected that the temperature distribution was closer to the previous experimental results after using new method. The error between simulation values and experimental values was decreased. The simulation result showed that temperature of corner was highest in the cold store. The temperature change of the cold store in the cooling process could be better predicted by using modified simulation method and the accuracy of numerical simulation of cold store in the cooling process could also be validated.


2014 ◽  
Vol 988 ◽  
pp. 241-244
Author(s):  
Hu Zhu ◽  
Wen Wen Lin ◽  
Jin Lan Bai

The digital simulation method for NC incremental sectional forming is studied and the forming effect of NC incremental integral forming and sectional forming is analyzed through the digital simulation method in this paper. Digital simulation results show that the proposed simulation method for NC incremental sectional forming is reasonable and achievable. The difference of the forming quality between NC incremental sectional forming and integral forming is small. The sectional forming method has feasibility.


2012 ◽  
Vol 271-272 ◽  
pp. 1366-1371
Author(s):  
Qin Xiang Xia ◽  
Teng Xu ◽  
Guang Ming Wei ◽  
Fu Yuan Ye

Multi-position progressive stamping is widely used in industrial fields, such as electronic, automobile and appliance, etc. Finite element numerical simulation has been an effective method to analyze the deformation of multi-position progressive stamping, the progressive die with 13 positions for the high strength steel automotive soleplate component part was manufactured based on the FEA simulation results obtained by multi-position multi-operation modeling method, and the corresponding progressive stamping experiments were carried out. The experimental results of the forward deep drawing of position 3 were further compared with the simulation ones, the results conform well to each other.


Sign in / Sign up

Export Citation Format

Share Document