Optical Strain Measurement on Small Specimens Based on Laser Speckles

2008 ◽  
Vol 584-586 ◽  
pp. 237-242 ◽  
Author(s):  
Eduard Schenuit ◽  
Rainer Bolkart ◽  
Thomas Becker ◽  
Oliver Spinka

Progresses in developments of high resolution digital cameras and processors power as well enable the use of optical systems for axial and biaxial strain measurements. The main benefit of these systems is a contact free measurement on the sample surface without any influence to the sample. The commonly used optical systems based on following markings attached to sample surface which have to be applied before testing. This paper presents an alternative optical measuring system using the speckle-correlation-technique. The laser based method does not need any special sample markings before testing. The speckle correlation in the presented extensometer measures up to two-dimensional surface strains in tensile as well as in compression tests; original gauge lengths down to 1.5 mm are supported.

2021 ◽  
pp. 105678952110451
Author(s):  
Isa Emami Tabrizi ◽  
Adnan Kefal ◽  
Jamal Seyyed Monfared Zanjani ◽  
Mehmet Yildiz

In previous study the failure initiation and development in hybrid fiber laminates was successfully monitored and determined. In current investigation a novel damage monitoring approach is proposed for hybrid laminates by combining different optical strain measurement techniques namely digital image correlation (DIC), fiber Bragg grating sensors (FBG) and infrared thermography (IRT) with smoothing element analysis (SEA). This viable experimental procedure eliminates the effects of global/local nature of optical strain measurement systems on heterogeneous damage accumulation and is a two-step approach. First, all optical sensing systems together with conventional strain gauges are utilized concurrently to indicate the differences in the measured strains and monitor damage accumulation under tensile loading. This demonstrates how failure events disturb the measurement capabilities of optical systems, which can cause a miscalculation of hybrid effect in hybrid-fiber laminates. The second step involves the utilization of SEA algorithm for discretely measured DIC displacements to predict a realistic continuous displacement/strain map and rigorously mitigate the inherent noise of the full field optical system. Remarkably, for large deformation states in hybrid composites, the combination of SEA/DIC enables early prediction of susceptible damage zones at stress levels 30% below material strength.


2013 ◽  
Vol 194 (3) ◽  
pp. 1554-1558 ◽  
Author(s):  
Hao Zhang ◽  
Ganyun Huang ◽  
Haipeng Song ◽  
Yilan Kang

Abstract In this study, damage evolution and strain localization in sandstone have been experimentally investigated in uniaxial compression tests. A digital image correlation technique has been applied to obtain apparent strain fields which can visually display the deformation and damage evolution of rock. The experimental results show that regions with apparent strain concentration (RASC) develop at the initial loading stage and distribute diffusely on the sample surface which may correspond to the damaged areas. With incremental load, the RASCs localize spatially, probably via coalescence into a line-shaped area that behaves like a macroscopic crack leading to the eventual failure of the specimen. A factor DRASC representing the deviation of the average apparent strain in RASCs from the average on the whole sample surface and a localization factor Lf, are proposed to characterize the evolution of damage and localization. DRASC increases slowly in the initial phase of loading and rises rapidly after the onset of localization. Lf decreases during loading which indicate the localization of spatial distribution of damage. The two factors can be used to well reflect the damage evolution and strain localization of rock specimens under compression.


2006 ◽  
Vol 3-4 ◽  
pp. 403-410 ◽  
Author(s):  
E.A. Patterson ◽  
Maurice P. Whelan ◽  
Erwin Hack ◽  
Thorsten Siebert ◽  
Richard L. Burguete ◽  
...  

The paper describes the work towards a set of standardised tests for the evaluation of the performance of optical systems for measuring strain. In particular, the standardised tests are designed to allow the components of a system to be evaluated both in terms of hardware and software. The intention is to allow designers of optical systems to assess the efficacy of their innovations in instrumentation and algorithms, to assist manufacturers of systems in the quality assurance process, to permit end-users to evaluate system capabilities prior to purchase, and to support both manufacturers and end-users in setting up and fault diagnosis. Two standardised tests are proposed and described of which one is physical, a disc in contact with a half-space, and the other is virtual, a pair of shrinkage-fit thick rings or cylinders.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 116
Author(s):  
Julian Deuerling ◽  
Shaun Keck ◽  
Inasya Moelyadi ◽  
Jens-Uwe Repke ◽  
Matthias Rädle

This work presents a novel method for the non-invasive, in-line monitoring of mixing processes in microchannels using the Raman photometric technique. The measuring set-up distinguishes itself from other works in this field by utilizing recent state-of-the-art customized photon multiplier (CPM) detectors, bypassing the use of a spectrometer. This addresses the limiting factor of integration times by achieving measuring rates of 10 ms. The method was validated using the ternary system of toluene–water–acetone. The optical measuring system consists of two functional units: the coaxial Raman probe optimized for excitation at a laser wavelength of 532 nm and the photometric detector centered around the CPMs. The spot size of the focused laser is a defining factor of the spatial resolution of the set-up. The depth of focus is measured at approx. 85 µm with a spot size of approx. 45 µm, while still maintaining a relatively high numerical aperture of 0.42, the latter of which is also critical for coaxial detection of inelastically scattered photons. The working distance in this set-up is 20 mm. The microchannel is a T-junction mixer with a square cross section of 500 by 500 µm, a hydraulic diameter of 500 µm and 70 mm channel length. The extraction of acetone from toluene into water is tracked at an initial concentration of 25% as a function of flow rate and accordingly residence time. The investigated flow rates ranged from 0.1 mL/min to 0.006 mL/min. The residence times from the T-junction to the measuring point varies from 1.5 to 25 s. At 0.006 mL/min a constant acetone concentration of approx. 12.6% was measured, indicating that the mixing process reached the equilibrium of the system at approx. 12.5%. For prototype benchmarking, comparative measurements were carried out with a commercially available Raman spectrometer (RXN1, Kaiser Optical Systems, Ann Arbor, MI, USA). Count rates of the spectrophotometer surpassed those of the spectrometer by at least one order of magnitude at identical target concentrations and optical power output. The experimental data demonstrate the suitability and potential of the new measuring system to detect locally and time-resolved concentration profiles in moving fluids while avoiding external influence.


2006 ◽  
Vol 5-6 ◽  
pp. 145-152 ◽  
Author(s):  
Andrew Morris ◽  
John P. Dear ◽  
Miltiadis Kourmpetis

Optical strain measurement techniques have been extensively developed in recent years in order to cope in various environments. Power stations and wind turbine blades can provide challenging environments for the use of a measurement technique. There are, however, many installation problems to be overcome. For example, there is the need to have regard for the hostile environment in steam generating plant and the demanding conditions to which wind turbine blades are subjected. Ideally the outputs from individual sensors would be used for continuous remote monitoring. However, measurements can also be useful each time the plant is shut down during a plant outage; which would be used to complement data from existing proven rugged monitoring methods. This paper addresses the monitoring of pressurized steam pipes as to their micro-strain growth related to time in service. This paper presents the progress made in the developing of a ruggedised digital speckle ‘sensor’ and associated image capture system. The effect of subsurface defects in the strain distribution is examined.


2021 ◽  
pp. 33-39
Author(s):  
Makar S. Stepanov ◽  
rina G. Koshlyakova

The accelerated heat treatment during steel products hardening technology has been investigated. The possibility of measuring the temperature of steel products by thermoelectric platinum-platinum-rhodium thermocouple under microarc heating conditions is analyzed. During the experiments, working junctions of two S-type thermocouples: working and standard, were coined into the sample surface at the same level. The free thermocouples ends were connected to a digital multimeter and a personal computer. It was determined that 5 factors affect the measurement results: the electric current strength in the circuit, carbon powder, calibration, number of repeated measurement cycles, and a thermocouple copy. When planning the experiment, the concept of conducting a step-by-step nested experiment was used. Variance analysis method was used to process the experimental results. The measurement method precision parameters were calculated: repeatability and reproducibility. A linear mathematical model linking the measurement method reproducibility index with the measured temperature value has been obtained. A linear mathematical model is obtained that relates the reproducibility index of the measurement method to the measured temperature value. A measuring system for the experimental determination of the temperature of a steel sample is proposed and its application is justified for different electric current densities on the sample surface and varying duration of microarc heating. The possibilities of selecting and controlling the microarc heating modes depending on the required temperature of the heat treatment of the steel product are determined.


Author(s):  
John C. Steuben ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos

Additive Manufacturing (AM) encompasses a broad variety of fabrication techniques characterized by successive additions of mass and/or energy to a build domain. AM processes have been developed for a wide variety of feedstock materials, including metals, polymers, and ceramics. In the present work we study the AM of ceramics using the Direct Ink Writing (DIW) technique. We performed comparative studies between additively manufactured and conventionally manufactured test articles, in order to quantify the variations in output geometry and mechanical properties induced by the DIW process. Uniaxial tests are conducted using high-performance optical strain measurement techniques. In particular, it is shown that the DIW-produced specimens exhibit anisotropic shrinkage when fired, as well as a marked decrease in stiffness and ultimate strength. We conclude with a discussion of potential mechanisms which may be responsible for these property degradations, and introduce potential adaptations to the DIW AM process that may be effective in combating them.


2020 ◽  
Vol 54 (25) ◽  
pp. 3895-3917 ◽  
Author(s):  
Garrett W Melenka ◽  
Cagri Ayranci

Braiding is an advanced textile manufacturing method that is used to produce two-dimensional and three-dimensional components. Unlike laminated structures, braids have interlaced yarns that form a continuity between layers. This structure allows for improved impact resistance, damage tolerance, and improved through-thickness reinforcement. Despite the numerous advantages of braided composites, braids also have shortcomings. Their highly complex fiber architecture presents challenges in the availability and choice of the strain measuring and characterization techniques. Advanced measurement methods such as optical strain measurement, micro-computed tomography, and in situ strain measurement are required. Optical strain measurement methods such as digital image correlation and high-speed imaging are necessary to accurately measure the complex deformation and failure that braided composites exhibit. X-ray-based micro-computed tomography measurements can provide detailed geometric and morphologic information for braided structures, which is necessary for accurately predicting the mechanical properties of braided structures. Finally, in situ strain measurement methods will provide detailed information on the internal deformation and strain that exists within braided structures. In situ sensors will also allow for in-service health monitoring of braided structures. This paper provides a detailed review of the aforementioned sensing technologies and their relation to the measurement of braided composite structures.


Author(s):  
J. Munguía ◽  
H. Chouaib ◽  
J. de la Torre ◽  
G. Bremond ◽  
C. Bru-Chevallier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document