Consolidation of Titanium, and Ti-6Al-4V Alloy Powders by Powder Compact Forging

2009 ◽  
Vol 618-619 ◽  
pp. 513-516 ◽  
Author(s):  
De Liang Zhang ◽  
Stella Raynova ◽  
Vijay Nadakuduru ◽  
Peng Cao ◽  
Brian Gabbitas ◽  
...  

Consolidation of titanium and titanium alloy powders using thermomechanical powder metallurgy (TPM) processes (powder compact forging, extrusion and rolling) is one way that can lead to cost-effective production of high value-added consolidated titanium and titanium alloy products such as near-net shaped components, tubes and plates. This paper provides an overview of the quality, microstructure (to limited depth), porosity level and mechanical properties of disks produced using open die forging of powder compacts of CP titanium and Ti-6Al-4V alloy powders. The general materials science principles underlying the relationships between processing conditions, microstructure and the mechanical properties of the disks made by using the powder compact forging are discussed.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1739-1744
Author(s):  
VIJAY N. NADAKUDURU ◽  
DELIANG ZHANG ◽  
PENG CAO ◽  
BRIAN GABBITTAS

Development of innovative techniques to produce gamma TiAl based alloys, with good mechanical properties, while still maintaining ultra fine grain size can be rewarding, but also is a great challenge. In the present study study a Ti -47 Al -2 Cr ( at %) alloy has been synthesized by directly forging green powder compacts of a Ti / Al / Cr composite powder produced by high energy mechanical milling of a mixture of elemental Ti , Al , Cr powders. It has been found that the density of the bulk consolidated alloy sample after forging decreases from 95% of the theoretical density in the central region to 84% in the periphery region. The microstructure of the bulk alloy consisted of several Ti rich regions, which was expected to be mainly due to initial powder condition. The room temperature tensile strength of the samples produced from this process was found to be in the range of 115 – 130 MPa. The roles of canning and green powder compact density in determining the forged sample porosity level and distribution are discussed.


2019 ◽  
Vol 70 (4) ◽  
pp. 359-367
Author(s):  
Masoud Shafie ◽  
Hamid Zarea-Hosseinabadi

This study was performed to use date palm rachis, as a low value bio-waste, in the manufacture of a high value added eco-friendly structural composite lumber. Taguchi design of experiments was applied to analyse the effect of raw material and product parameters on the mechanical properties of laminated strand lumber from date palm rachis. The results indicate that the composite exhibits similar or superior strength properties compared to solid lumber and engineered products from wood or other lignocellulosic material for building sector. Taguchi design of experiments was assessed as a powerful and cost effective technique to obtain optimal levels for maximizing the mechanical properties of the environmentally-friendly composite. Maximum values for the mechanical properties of date palm rachis-based LSL were obtained from a combination of 20 mm product thickness, 10 % resin content, 4mm strand thickness, and 850 kg/m3 product density. Product thickness with an 81.3 % contribution and strand thickness with an 80 % contribution have the highest effects on the flatwise stiffness and compression strength perpendicular to grain, respectively.


2011 ◽  
Vol 21 (3) ◽  
pp. 183
Author(s):  
Jacques Lacaze ◽  
Alexis Arnal ◽  
Jean-Luc Dupuy ◽  
Dominique Poquillon

Powder metallurgy is a highly developed and cheap method of manufacturing reliable materials, either metallic, ceramic or composite. This process was used to make green compacts of iron powders with a high porosity level. This study is part of a project aimed at describing the relationships between mechanical properties and morphological features of such compacts, with particular attention paid to the shape of the grains and the compaction pressure. In this report, a method is proposed to separate the intra grain porosity from the cavities located between particles. The approach is based on the covariogram of images obtained from the surface of the compacts by means of a laser roughometer. To achieve this separation, a model of the structure is proposed which assumes that the distributions of the grains and of the intra-particle cavities are random and independent. Each distribution is characterized by two parameters. A satisfactory agreement is obtained between experimental and calculated covariograms after identification of these parameters.


2014 ◽  
Vol 1019 ◽  
pp. 3-10 ◽  
Author(s):  
Brian Gabbitas ◽  
Fei Yang ◽  
Stella Raynova ◽  
Ming Tu Jia

Both open die and closed die powder compact forging can be used for the consolidation of Ti and pre-alloyed Ti 6Al 4V powders produced by a hydride-dehydride (HDH) process. The approach used is initial cold or warm compaction into cylindrical shapes, or into a specific pre-form shape appropriate for achieving a particular final forged shape. The economic benefit is near net-shape processing with minimum machining required after forging. Manufacturing costs are also minimised by forging a compact, with a sufficiently high enough density, in air, without a protective atmosphere. The challenge, from a manufacturing point of view, is the operation of a manufacturing route which gives rapid and qualified compaction to meet production demands and batch sintering to achieve a high enough density prior to final forging to shape. In addition to this the final product has to have the right level of mechanical properties. This paper reviews some key findings from powder compact production, through to sintering and forging. These will be presented in terms of alpha-beta phase distribution in the microstructure, the degree of porosity, heat treatment and their effects on mechanical properties.


2018 ◽  
Vol 770 ◽  
pp. 31-38 ◽  
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Stiliana Raynova ◽  
Ajit Pal Singh ◽  
Leandro Bolzoni

Ti-5553 (Ti-5Al-5V-5Mo-3Cr, wt. %) alloy is a recently developed near β titanium alloy and it has a very good hardenability, good ductility and high strength. In this study, we discussed the feasibility of preparing Ti-5553 alloy by different processes from powder mixtures of hydride-dehydride titanium powder, elemental powders and master alloy powders, including (1) direct extrusion of powder compact in argon, (2) extrusion of the vacuum-sintered billet in air and (3) extrusion of the hot-pressed billet in air. XRD, OM and SEM were used to determine the phase constitutions and microstructures of the prepared Ti-5553 alloys, and mechanical test was performed to examine their mechanical properties. The results showed the microstructures and phase constitutions of Ti-5553 alloys were significantly affected by different processes, which resulted in the relevant mechanical properties. The effect of the selected heat treatment on the microstructures and properties of Ti-5553 alloy were investigated as well.


2016 ◽  
Vol 704 ◽  
pp. 68-74 ◽  
Author(s):  
Ming Tu Jia ◽  
Brian Gabbitas

Powder compact forging in combination with induction sintering, a field assisted sintering technique (FAST), was used to produce commercially pure (CP) Ti and Ti-13V-11Cr-3Al parts. Green powder compacts with high relative density were manufactured by cold compaction and warm compaction, respectively. During the powder compact forging process, CP titanium powder was consolidated completely to produce a near net shaped top cover for a diving helmet with full density and good mechanical properties. Also, a Ti-13V-11Cr-3Al alloy was fully consolidated into a cylinder using blended elemental powders. As a comparison, raw titanium powder with different oxygen contents was used to make a Ti-13V-11Cr-3Al powder compact forging. Using a starting powder with low oxygen content, a forged cylinder with good mechanical properties was produced.


2020 ◽  
pp. 152808372097134
Author(s):  
Sherif M Youssef ◽  
M Megahed ◽  
Soliman S Ali-Eldin ◽  
MA Agwa

Vacuum resin infusion (VRI) is a promising technique for manufacturing complicated structural laminates. This high viscosity of nanofilled resin increases the filling time and leads to an incomplete mold filling. The mold filling time can be reduced either by making the fiber dimensions smaller than the mold (gaps around the fibers) or by adding ethanol to nanofilled epoxy. However, ethanol addition influences the mechanical properties of composite laminates. In this study, different amounts of ethanol (0.5 wt. % and 1 wt. %) were used as a diluent to both neat epoxy and epoxy filled with (0.25 wt. %) of titanium dioxide (TiO2) nanoparticles. From results, it was found that ethanol addition saves the time for neat and nanofilled epoxy by 47.1% and 24.1%, respectively. It was found that adding 0.5 wt. % of ethanol to 0.25wt. % of TiO2 nanoparticles (GT0.25E0.5) enhances the tensile and flexural strength by 30.8% and 55.9%, respectively compared with neat specimens. Furthermore, the tensile and flexural moduli increased by 62% and 72.3%, respectively. Furthermore, the mold filling time was investigated experimentally and validated numerically using ANSYS FLUENT software. The mold filling time prediction using ANSYS FLUENT can be used to avoid resin gelation before the incomplete mold filling and thus can be considered a cost-effective methodology. The results showed that the gaps around the fibers reduce the time by 178% without affecting the mechanical properties.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


Sign in / Sign up

Export Citation Format

Share Document