Evaluation of Residual Stress of Railway Wheel Regarding to Deterioration

2010 ◽  
Vol 654-656 ◽  
pp. 2495-2498
Author(s):  
Seok Jin Kwon ◽  
Dong Hyung Lee ◽  
Jung Won Seo ◽  
Sung Tae Kwon

Upon investigation of the damaged wheels it was determined that the cracking was caused by thermal fatigue during on-tread friction braking. The thermal cracks appear as short cracks oriented axially on the wheel tread. Severe heating of the wheel tread during braking was believed to be a contributing the variation of residual stress which is related to wheel failure. It is necessary to evaluate the residual stress due to deterioration of wheel tread in order to ensure the safety of wheel. In the present paper, the residual stress of railway wheel for deterioration using x-ray diffraction system is evaluated. The result shows that the residual stress of wheel is depend on the running distance and the residual stress needs to be inspected between the wheel diameter of 800 and 780mm.

2010 ◽  
Vol 62 (10) ◽  
pp. 774-777 ◽  
Author(s):  
C. Kirchlechner ◽  
K.J. Martinschitz ◽  
R. Daniel ◽  
C. Mitterer ◽  
J. Donges ◽  
...  

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2013 ◽  
Vol 768-769 ◽  
pp. 723-732 ◽  
Author(s):  
Jürgen Gegner ◽  
Wolfgang Nierlich

Rolling bearings in wind turbine gearboxes occasionally fail prematurely by so-called white etching cracks. The appearance of the damage indicates brittle spontaneous tensile stress induced surface cracking followed by corrosion fatigue driven crack growth. An X-ray diffraction based residual stress analysis reveals vibrations in service as the root cause. The occurrence of high local friction coefficients in the rolling contact is described by a tribological model. Depth profiles of the equivalent shear and normal stresses are compared with residual stress patterns and a relevant fracture strength, respectively. White etching crack failures are reproduced on a rolling contact fatigue test rig under increased mixed friction. Causative vibration loading is evident from residual stress measurements. Cold working compressive residual stresses are an effective countermeasure.


2007 ◽  
Vol 40 (4) ◽  
pp. 675-683 ◽  
Author(s):  
Cristy L. Azanza Ricardo ◽  
Mirco D'Incau ◽  
Paolo Scardi

A new procedure is proposed to determine sub-surface residual stress gradients by laboratory X-ray diffraction measurements at different depths using a chemical layer-removal technique. The standard correction algorithm for stress relaxation due to layer removal is improved by including corrections for X-ray absorption, and by the addition of constraints imposed by the mechanical equilibrium conditions. Besides correcting the data,i.e.providing more reliable through-thickness residual stress trends, the proposed procedure also provides an elastically compatible and plausible estimate of the residual stress inside the component, well beyond the measured region. The application of the model is illustrated for a set of Al-alloy components shot-peened at different Almen intensities. Results are compared with those given by `blind hole drilling', which is an independent and partly destructive method.


Sign in / Sign up

Export Citation Format

Share Document