High Strength and Toughness Al2O3 Composite Materials for the Improvement of Ceramic Channel in SRL Hot Dipping System

2010 ◽  
Vol 658 ◽  
pp. 416-419 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Sung Hun Cho ◽  
Soo Wohn Lee

The ceramic channel is very important in SRL hot dipping system. High strength and fracture toughness of ceramic channel materials can improve the quality, productivity and economic feasibility of zinc plated steel. The purpose of this research was to find out the most suitable conditions of the ceramic channel that have best fracture strength and fracture toughness. The hot pressed composite materials was carried out by hot pressing Al2O3 with different content of ZrO2. The composite contained from 0-20 wt.% ZrO2. Hot pressed composite materials were observed for mechanical properties (density, hardness, fracture toughness and flexural strength) and microstructure.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2012 ◽  
Vol 512-515 ◽  
pp. 706-709 ◽  
Author(s):  
Chang Ling Zhou ◽  
Yan Yan Wang ◽  
Zhi Qiang Cheng ◽  
Chong Hai Wang ◽  
Rui Xiang Liu

ZrB2-20%volSiC ceramic composites with different volume of BN short fiber were fabricated by the hot-pressing sintering under 2000°C. The content of BN short fiber changed from 0 to 15vol%. The density, flexural strength, fracture toughness and thermal expansions coefficient were studied. The microstructures of the samples were observed by scanning electron microscopy. The results show that the introducing of BN short fiber into the ZrB2-20%volSiC lead to a serious of change to the mechanical properties of the ceramic. When the content of the BN short fiber is 10vol%, the flexural strength and fracture toughness reach 422.1MPa and 6.15 MPa•m 1/2 respectively. And the mechanism of the increasing toughness was studied.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


2008 ◽  
Vol 368-372 ◽  
pp. 1758-1760 ◽  
Author(s):  
Wen Wen Wu ◽  
Guo Jun Zhang ◽  
Yan Mei Kan ◽  
Pei Ling Wang

ZrB2-SiC based composites with 0,5 and 15 vol% addition of ZrC were synthesized via reactive hot pressing at 1800°C using Zr, Si and B4C as raw materials. The mechanical properties of the composites were investigated. The composite of ZSC15 that contained 15 vol% of ZrC has the highest hardness. ZSC5 with 5 vol% of ZrC owns a most homogenous microstructure and the highest fracture toughness and flexural strength.


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


1993 ◽  
Vol 327 ◽  
Author(s):  
Hidehiro Endo ◽  
Masanori Ueki

AbstractFully densified WC-A12O3 composites were successfully consolidated by both hot-pressing and pressureless sintering. The optimum hot-pressing condition for the composites was 1700°C for 2h under a pressure of 40MPa. A remarkable improvement in mechanical properties was achieved in the composite system, especially in WC-30 and -70vol%A12O3, compared to the monolithic WC and A12O3 ceramics. The addition of MgO as a sintering aid had a great effect on the properties of the composites. WC-30vol%A12O3 composite with 1.Owt% MgO addition exhibited flexural strength higher than 1000MPa up to 1200°C, fracture toughness; KIC≥7MPa√m, and hardness; HV ≥2450. In pressureless sintering with the addition of MgO as a sintering aid and subsequent HIP treatment, the WC-30vol%A12O3 composite exhibited the flexural strength higher than 900MPa up to 1200°C.


2010 ◽  
Vol 658 ◽  
pp. 352-355 ◽  
Author(s):  
Hong Feng Yin ◽  
Lin Lin Lu

Ti3SiC2/SiC composites were fabricated by reactive hot pressing method. Effect of processing condition on the microstructure and mechanical properties of the composites were investigated. The results showed that: (1) Hot-pressing temperature influenced the phase constituent of Ti3SiC2/SiC composites. The flexural strength and fracture toughness of composites increased with hot pressing temperature. (2) The flexural strength and fracture toughness of composites increased when the content of SiC was increased. When the SiC content was 30wt% the flexural strength and fracture toughness of Ti3SiC2/SiC composite were 371MPa and 6.9MPa•m1/2 respectively. However, when the content of SiC reached 50wt%, the flexural strength and fracture toughness of composites decreased due to high porosity in the composites. (3) The flexural strength and fracture toughness of composites increased with the particle size of SiC added in composites. (4) Ti3SiC2/SiC composites were non-brittle at room temperature.


2011 ◽  
Vol 374-377 ◽  
pp. 1499-1506
Author(s):  
Rong Hui Zhang ◽  
Jian Li

In this study, the effect of micro-expansion high strength grouting material (EGM) and Modified polypropylene coarse fiber (M-PP fiber) on the mechanical properties of lightweight concrete are investigated. The influence of EGM and M-PP fiber on compressive strength , flexural strength and drying shrinkage of concrete are researched, and flexural fracture toughness are calculated. Test results show that the effect of EGM and M-PP fiber volume fraction (Vf) on flexural strength and fracture toughness is extremely prominent, compressive strength is only slightly enhanced, and the rate of shrinkage is obviously decreased. It is observed that the shape of the descending branch of load-deflection and the ascending branch of shrinkage-age tends towards gently with the increase of Vf. And M-PP fiber reinforced lightweight aggregate concrete is more economical.


2011 ◽  
Vol 686 ◽  
pp. 396-400
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Jing Jie Zhang ◽  
Zhen Yu Jiang

A new nano-composite ceramic tool and die material was prepared by vacuum hot pressing technique. The effect of hot pressing technology on the microstructure and mechanical properties of ZrO2nano-composite ceramic tool and die material was investigated systemically, and the ceramic tool and die material with good mechanical properties was fabricated successfully. Results show that, the highest flexural strength, fracture toughness and hardness of ZrO2nano-composite ceramic tool and die material reaches 1055 MPa, 10.57 MPa∙m1/2 and 13.59 GPa, respectively by means of the vacuum hot pressing technique at 1430 °C for 60min at 35MPa. The flexural strength and fracture toughness has been improved greatly by the optimization of hot pressing technology. In the materials, the optimum sinter process could ensure the t-ZrO2stabilized till room temperature that can enhance the toughening effect of ZrO2. The microstructure of ZrO2nano-composite ceramic tool and die materials were improved by the optimization of hot pressing technology, and the fracture mode is the typical mixed trans/inter-granular fracture mode.


2009 ◽  
Vol 79-82 ◽  
pp. 2011-2014 ◽  
Author(s):  
Hai Tang Wu ◽  
Wei Gang Zhang

ZrB2-SiC-BN ultrahigh-temperature ceramic (UHTC) was fabricated by hot-pressing at 1800°C under 23MPa pressure of argon. Compared to ZrB2-SiC, the flexural strength of ZrB2-SiC-BN composite material was enhanced by adding 30% BN, and the fracture toughness showed a slight decrease, while the hardness decreased sharply. The addition of 30% BN also noticeably improved the machinability of the composites. Furthermore, ablation resistance tests were carried out using an oxyacetylene torch under subsonic conditions. Results indicated that a coherent compact scale of zirconium silicate was formed, which acted as an effective barrier against the inward diffusion of oxygen.


Sign in / Sign up

Export Citation Format

Share Document