Anomalous Property Evolution during Annealing in HPTed SUS 304 Austenitic Stainless Steel

2010 ◽  
Vol 667-669 ◽  
pp. 589-592
Author(s):  
Innocent Shuro ◽  
Minoru Umemoto ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo ◽  
Hong Cai Wang

SUS 304 austenitic stainless steel (ASS) was deformed by high pressure torsion (HPT) to obtain 100% volume fraction of martensite (α') from a fully austenitic (γ) matrix. Deformation caused an increase in hardness (Hv) from 1.6 GPa in the as annealed state to 6.4 GPa after HPT. Deformed samples were then annealed in the range 200 – 600oC and peak hardness of 7.8 GPa was observed after annealing at 400oC for 1 hour. Differential scanning calorimetry (DSC) and electrical resistivity tests showed that the deformed alloy undergoes a two stage phase transformation on heating from room temperature up to 700oC. The first stage of transformation was associated with hardening behavior while the second one which is reverse α' → γ transformation resulted in a reduction in hardness. Annealing at 400oC after deformation was found to increase the magnetization saturation (Msat) values.

2010 ◽  
Vol 654-656 ◽  
pp. 334-337 ◽  
Author(s):  
Innocent Shuro ◽  
Minoru Umemoto ◽  
Yoshikazu Todaka ◽  
Seiji Yokoyama

SUS 304 austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation to give a two phase structure of austenite (γ) and martensite (α') by the transformation γα'. The phase transformation was accompanied by an increase in hardness (Hv) from 1.6 GPa in the as annealed form to 5.4 GPa in the deformed state. Subsequent annealing in temperature range 250oC to 450oC resulted in an increase in both α' volume fraction and hardness (6.4 GPa). Annealing at 600oC resulted in a decrease in α' volume fraction hardness.


2011 ◽  
Vol 239-242 ◽  
pp. 1300-1303
Author(s):  
Hong Cai Wang ◽  
Minoru Umemoto ◽  
Innocent Shuro ◽  
Yoshikazu Todaka ◽  
Ho Hung Kuo

SUS316L austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation from g®a¢. The largest volume fraction of 70% a¢ was obtained at 0.2 revolutions per minute (rpm) while was limited to 3% at 5rpm. Pre-straining of g by HPT at 5rpm decreases the volume fraction of a¢ obtained by HPT at 0.2rpm. By HPT at 5rpm, a¢®g reverse transformation was observed for a¢ produced by HPT at 0.2rpm.


2012 ◽  
Vol 500 ◽  
pp. 690-695 ◽  
Author(s):  
Fei Han ◽  
Gao Yong Lin ◽  
Qian Li ◽  
Rui Fen Long ◽  
Da Shu Peng ◽  
...  

In this paper, a kind of 304 austenitic stainless steel sheets has been investigated, and systemic tests were conducted to study the law and mechanics of work hardening of 304 austenitic stainless steel. The results of microstructure analyzing of 304 austenitic stainless steels showed that when it was deformed by means of tensile testing at room temperature, obvious work hardening was caused by the changes of structure during the deformation. The strain-induced α-martensite, ε-martensite and deformation twins enhanced flow stress obviously, which is the main reason for the strong work hardening in FCC metals and alloys with low stacking fault energy as 304 austenitic stainless steel.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1557 ◽  
Author(s):  
Yi Xiong ◽  
Yun Yue ◽  
Tiantian He ◽  
Yan Lu ◽  
Fengzhang Ren ◽  
...  

The impacts of rolling temperature on phase transformations and mechanical properties were investigated for AISI 316LN austenitic stainless steel subjected to rolling at cryogenic and room temperatures. The microstructure evolution and the mechanical properties were investigated by means of optical, scanning, and transmission electron microscopy, an X-ray diffractometer, microhardness tester, and tensile testing system. Results showed that strain-induced martensitic transformation occurred at both deformation temperatures, and the martensite volume fraction increased with the deformation. Compared with room temperature rolling, cryorolling substantially enhanced the martensite transformation rate. At 50% deformation, it yielded the same fraction as the room temperature counterpart at 90% strain, while at 70%, it totally transformed the austenite to martensite. The strength and hardness of the stainless steel increased remarkably with the deformation, but the corresponding elongation decreased dramatically. Meanwhile, the tensile fracture morphology changed from a typical ductile rupture to a mixture of ductile and quasi-cleavage fracture. The phase transformation and deformation mechanisms differed at two temperatures, with the martensite deformation contributing to the former, and austenite deformation to the latter. Orientations between the transformed martensite and its parent phase followed the K–S (Kurdjumov–Sachs) relationship.


2016 ◽  
Vol 838-839 ◽  
pp. 398-403 ◽  
Author(s):  
Marina Tikhonova ◽  
Nariman Enikeev ◽  
Ruslan Z. Valiev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.


2014 ◽  
Vol 783-786 ◽  
pp. 831-836 ◽  
Author(s):  
Alla Kipelova ◽  
Marina Odnobokova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of nanocrystalline structure in a 304-type austenitic stainless steel during multidirectional forging (MDF) at room temperature was investigated. Initial coarse austenite grains with an average size of 50 μm were refined to about 80 nm by martensitic transformation during MDF to a total true strain of 2 and remained unchanged upon further deformation up to a strain of 4. The volume fraction of martensite achieved ~0.9 after forging to a strain of 1.6. The MDF at room temperature was accompanied by a significant hardening of the 304-type steel. The microhardness and the flow stress increased during forging and approached their saturations on the levels of about 5 GPa and 1.7 GPa, respectively, after total true strain of 2. The structural mechanisms responsible for microstructure evolution during severe deformation are discussed.


Sign in / Sign up

Export Citation Format

Share Document