CdS Powders Obtained by Chemical Bath Deposition

2011 ◽  
Vol 672 ◽  
pp. 109-112
Author(s):  
Violeta Popescu ◽  
George Liviu Popescu ◽  
Emil Indrea ◽  
Dan Teofil Silipas

We studied the influence of the mixing on the properties of CdS powders obtained by Chemical Bath Deposition. The powders were obtained from baths containing cadmium chloride, thiourea, and ammonia. The obtained powders were characterized using FT-IR, in order to evaluate the purity of the obtained powder. Granulometric studies were made in order to establish the grain size distribution of the particles, and X ray diffraction in order to determine the structure of nanostructured CdS.

2006 ◽  
Vol 530-531 ◽  
pp. 720-727
Author(s):  
Guillermo Ruperto Martín Cortés ◽  
Wildor Theodoro Hennies ◽  
Francisco Rolando Valenzuela-Díaz

This paper studies the main well-know technological types of kaolins clays from the Republic of Cuba and compares it with one from Brazil. A simple description from the Cuban geology and from the involved kaolins deposits is showed. The basic characterization of each kind of kaolin, includes, chemical analyzes, grain size distribution, scanning electronic microscopy, X-ray diffraction and X-ray fluorescence for chemicals. For special assays it had conformed, by a simple axis hand press up to 5 t, test bodies, which had been burnt to the temperatures of 950, 1250 and 1450°C. These results include refractory and contraction results.


2021 ◽  
Vol 119 ◽  
pp. 111319
Author(s):  
P. Liaparinos ◽  
C. Michail ◽  
I. Valais ◽  
A. Karabotsos ◽  
A. Bakas ◽  
...  

Clay Minerals ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 435-442 ◽  
Author(s):  
M. Dondi ◽  
B. Fabbri ◽  
G. Guarini

AbstractThe grain size of raw materials influences their behaviour during the technological process and affects many properties of building clay products. Over the last few years, brickworks have been technologically updated and grain size requirements have been modified to ensure good behaviour during shaping and drying. Therefore, the reference schemes used to assess the suitability of clays, such as the classic Winkler diagram, should be updated.For this purpose, the grain-size distribution of 350 clays currently used in ~240 Italian plants was determined by X-ray monitoring of gravity sedimentation. Raw materials are basically represented by silty clays and clayey silts, while bodies present a narrower grain-size range. With reference to the Winkler diagram, most of the Italian bodies fall within the field of ‘thin-walled hollow bricks’, with no significant differentiation among the various product types.In order to improve the grain-size characterization of bodies, a new classification scheme for Italian raw materials is proposed, based on three ranges: >10 µm, 2-10 µm and <2 µm, respectively. It allows distinction of specific grain-size features of bodies for (a) facing bricks; (b) roofing tiles; and (c) lightweight blocks, paving bricks and hollow slabs.


1990 ◽  
Vol 206 ◽  
Author(s):  
G. W. Nieman ◽  
J. R. Weertman ◽  
R. W. Siegel

ABSTRACTConsolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate grain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sizes range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of e2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. Methodology, results and analysis of XRD and HREM experiments are presented.


2009 ◽  
Vol 1243 ◽  
Author(s):  
L. A. Cobos Cruz ◽  
C. A. Martínez Perez ◽  
A Martínez Villafañe ◽  
J. A. Matutes Aquino ◽  
J. R. Farias Macilla ◽  
...  

ABSTRACTCyclodextrin (CD) has been studied intensively due to its ability to form inclusion complexes with a variety of guest molecules in the solid state. A few studies have paid attention to the use of CD to facilitate the synthesis of inorganic nanoparticles. In this work the synthesis of magnetite (M) is made in the presence of CD. The particle size of the inorganic material is controlled by the presence of CD, in which spherical particles of few nanometers are grown. The synthesis of Fe3O4 (M) in the presence of α-cyclodextrin (α-CD) and β-cyclodextrin (βCD) is described. The formation of an M-CD complex is studied in both cases by Fourier transform infrared spectroscopy (FT-IR) in order to elucidate the chemical bonding of the complex. The morphology and size of the particles are determined by Field Emission Scanning Electron Microscopy (FESEM) and software. X-ray diffraction (XRD) is used to confirm the formation of magnetite.


2006 ◽  
Vol 2006 ◽  
pp. 1-8 ◽  
Author(s):  
A. Opalinska ◽  
C. Leonelli ◽  
W. Lojkowski ◽  
R. Pielaszek ◽  
E. Grzanka ◽  
...  

A high-pressure microwave reactor was used to study the hydrothermal synthesis of zirconia powders doped with 1 mol%Pr. The synthesis was performed in the pressure range from 2 to 8 MPa corresponding to a temperature range from 215C∘to 305C∘. This technology permits a synthesis of nanopowders in short time not limited by thermal inertia of the vessel. Microwave heating permits to avoid contact of the reactants with heating elements, and is thus particularly well suited for synthesis of doped nanopowders in high purity conditions. A mixture ofZrO2particles with tetragonal and monoclinic crystalline phases, about 15 nm in size, was obtained. The p/T threshold of about 5-6 MPa/265–280C∘was necessary to obtain good quality of zirconia powder. A new method for quantitative description of grain-size distribution was applied, which is based on analysis of the fine structure of the X-ray diffraction line profiles. It permitted to follow separately the effect of synthesis conditions on the grain-size distribution of the monoclinic and tetragonal phases.


Sign in / Sign up

Export Citation Format

Share Document