Cutting Force and Tool Wear in Face Milling of Hardened Steel

2012 ◽  
Vol 723 ◽  
pp. 77-81 ◽  
Author(s):  
Xiao Bin Cui ◽  
Jun Zhao

In the present study, face milling of AISI H13 steel (46-47 HRC) with CBN tools was conducted. Cutting speeds 389 and 1592 m/min were adopted in order to identify the characteristics of cutting force and tool wear at low and high cutting speeds. For each cutting speed, the metal removal rate and axial depth of cut were set to be invariable, and different combinations of radial depth of cut and feed per tooth were selected. The optimum combination of radial depth of cut and feed per tooth for each cutting speed was distinguished. For different cutting speeds, the cutting force changed in varying ways with different combinations of cutting parameters. At the cutting speed of 389 m/min, after the initial cutting stage, the tool wear rate was low even at the end of tool life. When the cutting speed was 1592 m/min, the tool wear increased rapidly, and the tool wear rate changed little in the whole tool life span. Adhesion and abrasion were the main wear mechanisms of the tool faces at the cutting speed of 389 m/min. While at the cutting speed of 1592 m/min, fracture contributed greatly to the final tool failure.

2020 ◽  
Vol 4 (1) ◽  
pp. 16
Author(s):  
Keyvan Hosseinkhani ◽  
Eu-Gene Ng

In this paper, a unique approach for estimating tool life using a hybrid finite element method coupled with empirical wear rate equation is presented. In the proposed approach, the computational time was significantly reduced when compared to nodal movement technique. However, to adopt such an approach, the angle between tool’s rake and flank faces must be constant through the process and at least two cutting experiments need to be performed for empirical model calibration. It is also important to predict the sliding velocity along the tool/flank face interface accurately when using Usui’s model to predict the tool wear rate. Model validations showed that when the sliding velocity was assumed to be equivalent to the cutting speed, poor agreement between the predicted and measured wear rate and tool life was observed, especially at low cutting speed. Furthermore, a new empirical model to predict tool wear rate in the initial or break-in period as a function of Von Mises stress field was developed. Experimental validation shows that the newly developed model substantially improved the initial tool wear rate in terms of trend and magnitude.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


2020 ◽  
Vol 402 ◽  
pp. 81-89
Author(s):  
Laxman B. Abhang ◽  
Mohd Iqbal ◽  
M. Hameedullah

A multi-response optimization is a popular tool in many economic, managerial, constructional, manufacturing, process design, product design technologies, machinery and system, devices, process parameters etc. This research paper demonstrates the application of a simple multi-objective optimization on the basis of ratio analysis (MOORA) method to solve the multi-criteria (objective) optimization problem in the machining process. In this paper, the chip-tool interface temperature, main cutting force, and tool wear rate were investigated in various machining conditions in turning operations. Various machining parameters, such as the cutting speed, feed rate, and depth of cut and effective tool inserts nose radius, were considered. Composite factorial design (24+8) was used for experimentation. Multiple response values were obtained using actual experimentation. By using these experiments, two different methods were proposed. Machining parameters were optimized by minimizing chip-tool interface temperatures, tool wear rate, and main cutting force during machining of alloy steel. The results obtained using the MOORA method almost agree with the grey relational analysis method which shows the authenticate applicability, potentiality, and flexibility of MOORA method for solving various complex decision-making problems in present-day manufacturing industries.


Author(s):  
Patricia Mun˜oz de Escalona ◽  
Paul G. Maropoulos

During a machining process, cutting parameters must be taken into account, since depending on them the cutting edge starts to wear out to the point that tool can fail and needs to be change, which increases the cost and time of production. Since wear is a negative phenomenon on the cutting tool, due to the fact that tool life is reduced, it is important to optimize the cutting variables to be used during the machining process, in order to increase tool life. This research is focused on the influence of cutting parameters such as cutting speed, feed per tooth and axial depth of cut on tool wear during a face milling operation. The Taguchi method is applied in this study, since it uses a special design of orthogonal array to study the entire parameters space, with only few numbers of experiments. Also a relationship between tool wear and the cutting parameters is presented. For the studies, a martensitic 416 stainless steel was selected, due to the importance of this material in the machining of valve parts and pump shafts.


2015 ◽  
Vol 1115 ◽  
pp. 86-89
Author(s):  
Roshaliza Hamidon ◽  
Erry Y.T. Adesta ◽  
Muhammad Riza

In pocketing operation for mold and die, the variation of tool engagement angle causes variation in the cutting force and also cutting temperature. The objective of this study is to investigate the effect of tool engagement on cutting temperature when using the contour in tool path strategy for different cutting speeds. Cutting speeds of 150, 200 and 250m/min, feedrate from 0.05, 0.1, 0.15 mm/tooth and depths of cut of 0.1, 0.15 and 0.2 mm were applied for the cutting process. The result shows that by increasing cutting speed, the cutting temperature would rise. Varying the tool engagement also varied the cutting temperature. This can be seen clearly when the tool makes a 90oturn and along the corner region. Along the corner, the engagement angle varies accordingly with the radial depth of cut.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


2017 ◽  
Vol 867 ◽  
pp. 165-170
Author(s):  
Isha Srivastava ◽  
Ajay Batish

The aim of this study were to evaluate the performance of PVD (TiAlN+TiN) and CVD (TiCN+Al2O3+TiN) coated inserts in end milling of EN–31 hardened die steel of 43±1 HRC during dry and MQL (Minimum quantity lubrication) machining. The experiments were conducted at a fixed feed rate, depth of cut and varying cutting speed to measure the effect of cutting speed on cutting force and tool wear of CVD and PVD-coated inserts. The performance of CVD and PVD-coated inserts under dry and MQL condition by measuring the tool wear and cutting force were compared. During cutting operation, it was noticed that PVD inserts provide less cutting force and tool wear as compared to the CVD inserts under both dry as well as the MQL condition because PVD inserts have a thin insert coating and CVD inserts have a thick insert coating, but PVD inserts experience catastrophic failure during cutting operation whereas CVD inserts have a capability for continuous machining under different machining. Tool wear has measured by SEM analysis. The result shows that MQL machining provides the optimum results as compared to the dry condition. MQL machining has the ability to work under high cutting speed. As the cutting speed increases the performance of dry machining was decreased, but in MQL machining, the performance of the inserts was increased with increases of cutting speed. MQL machining generates less cutting force on the cutting zone and reduces the tool wear which further increase the tool life.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Sign in / Sign up

Export Citation Format

Share Document