Electromagnetic Interference in Silicon Carbide DC-DC Converters

2013 ◽  
Vol 740-742 ◽  
pp. 1044-1047 ◽  
Author(s):  
Omid Mostaghimi ◽  
Rupert C. Stevens ◽  
Nicholas G. Wright ◽  
Alton B. Horsfall

A comparison of radiated noise for Silicon and Silicon Carbide converters is presented. SiC JBS diodes were used in this evaluation to enable fast switching times, whilst minimizing the transistor junction temperature. Radiated electromagnetic-interference measurements showed the highest noise signature for the SiC JFET and lowest for the SiC MOSFET. The negative gate voltage requirement of the SiC MOSFET introduces up to 6 dBµV increase in radiated noise, due to the induced current in the high frequency resonant stray loop in the negative power plane of the gate drive. The SiC JFET and MOSFET have shown overall converter efficiencies of 96% and 95.5% respectively. This efficiency shows only a weak frequency dependence, in contrast to the CoolMOS/SiC JBS diode combination which demonstrated an efficiency drop from 95% to 92.5% when increasing the frequency from 100kHz to 250kHz.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4912
Author(s):  
Xiang Lu ◽  
Volker Pickert ◽  
Maher Al-Greer ◽  
Cuili Chen ◽  
Xiang Wang ◽  
...  

Silicon carbide devices have become increasingly popular in electric vehicles, predominantly due to their fast-switching speeds, which allow for the construction of smaller power converters. Temperature sensitive electrical parameters (TSEPs) can be used to determine the junction temperature, just like silicon-based power switches. This paper presents a new technique to estimate the junction temperature of a single-chip silicon carbide (SiC) metal–oxide–semiconductor field-effect transistor (MOSFET). During off-state operation, high-frequency chirp signals below the resonance frequency of the gate-source impedance are injected into the gate of a discrete SiC device. The gate-source voltage frequency response is captured and then processed using the fast Fourier transform. The data is then accumulated and displayed over the chirp frequency spectrum. Results show a linear relationship between the processed gate-source voltage and the junction temperature. The effectiveness of the proposed TSEPs is demonstrated in a laboratory scenario, where chirp signals are injected in a stand-alone biased discrete SiC module, and in an in-field scenario, where the TSEP concept is applied to a MOSFET operating in a DC/DC converter.


2005 ◽  
Vol 900 ◽  
Author(s):  
Claudiu I. Muntele ◽  
Sergey Sarkisov ◽  
Iulia Muntele ◽  
Daryush Ila

ABSTRACTSilicon carbide is a promising wide-bandgap semiconductor intended for use in fabrication of high temperature, high power, and fast switching microelectronics components running without cooling. For hydrogen sensing applications, silicon carbide is generally used in conjunction with either palladium or platinum, both of them being good catalysts for hydrogen. Here we are reporting on the temperature-dependent surface morphology and depth profile modifications of Au, Ti, and W electrical contacts deposited on silicon carbide substrates implanted with 20 keV Pd ions.


Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


2021 ◽  
pp. 2150050
Author(s):  
Mutaz Y. Melhem ◽  
Christiana Chamon ◽  
Shahriar Ferdous ◽  
Laszlo B. Kish

Recently, several passive and active attack methods have been proposed against the Kirchhoff–Law–Johnson–Noise (KLJN) secure key exchange scheme by utilizing direct (DC) loop currents. The DC current attacks are relatively easy, but their practical importance is low. On the other hand, parasitic alternating (AC) currents are virtually omnipresent in wire-based systems. Such situations exist due to AC ground loops and electromagnetic interference (EMI). However, utilizing AC currents for attacks is a harder problem. Here, we introduce and demonstrate AC current attacks in various frequency ranges. The attacks exploit a parasitic/periodic AC voltage-source at either Alice’s or Bob’s end. In the low-frequency case, the procedure is the generalized form of the former DC ground-loop-based attack. In the high-frequency case, the power density spectrum of the wire voltage is utilized. The attack is demonstrated in both the low and the high-frequency situations. Defense protocols against the attack are also discussed.


2014 ◽  
Vol 29 (10) ◽  
pp. 5091-5096 ◽  
Author(s):  
Xueqian Zhong ◽  
Xinke Wu ◽  
Weicheng Zhou ◽  
Kuang Sheng

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5173
Author(s):  
Yingzhe Wu ◽  
Shan Yin ◽  
Hui Li ◽  
Minghai Dong

The motor drive has been widely adopted in modern power applications. With the emergency of the next generation wide bandgap semiconductor device, such as silicon carbide (SiC) MOSFET, performance of the motor drive can be improved in terms of efficiency, power density, and reliability. However, the fast switching transient and serious switching ringing of the SiC MOSFET can cause unwanted high-frequency (HF) electromagnetic interference (EMI), which may significantly reduce the reliability of the motor drive in many aspects. In order to comprehensively reveal the mechanism of the EMI previously used in motor drives using SiC MOSFET, this paper plans to analyze the influences of both HF impedance of the motor and switching characteristics of the SiC MOSFET. A simulation model for motor drives has been proposed, which contains the HF circuit model of the motor as well as a semi-behavioral analytical model of the SiC MOSFET. Since the model shows a good agreement with the experimentally measured results on spectra of drain-source voltage of the SiC MOSFET (vds), phase to ground voltage of the motor (vphase), CM voltage (vcm), phase current of the motor (idm), and CM current (icm), it can be adopted to quantitatively investigate the influence of the motor impedance on EMI through frequency-domain analysis. Additionally, the impacts of switching characteristics of SiC MOSFET on EMI are also well studied according to relative experiment results in terms of switching speed, switching frequency, and switching ringing. Based on the analysis above, the relationship between motor impedance, switching characteristics of the SiC MOSFET, and HF EMI can be figured out, which is able to provide much helpful assistance for application of the motor drive.


Sign in / Sign up

Export Citation Format

Share Document