Deep-Level-Transient Spectroscopy Characterization of Mobility-Limiting Traps in SiO2/SiC Interfaces on C-Face 4H-SiC

2013 ◽  
Vol 740-742 ◽  
pp. 477-480 ◽  
Author(s):  
Tetsuo Hatakeyama ◽  
T. Shimizu ◽  
T. Suzuki ◽  
Y. Nakabayashi ◽  
Hajime Okumura ◽  
...  

Constant-capacitance deep-level-transient spectroscopy (CCDLTS) characterization of traps (or states) in SiO2/SiC interfaces on the C-face was carried out to clarify the cause of low-channel mobility of SiC MOSFETs. CCDLTS measurements showed that the interface-state density (Dit) near the conduction band of SiO2/SiC interfaces fabricated using N2O oxidation was much higher than that of SiO2/SiC interfaces fabricated using wet oxidation. The high density of interface states near the conduction band is likely to be the main cause of the low mobility of MOSFETs fabricated using N2O oxidation.

1991 ◽  
Vol 69 (9) ◽  
pp. 6521-6525 ◽  
Author(s):  
N. C. Halder ◽  
H. W. Kim ◽  
K. M. D’Souza ◽  
D. E. Barnes ◽  
S. E. Hartson ◽  
...  

2011 ◽  
Vol 276 ◽  
pp. 87-93
Author(s):  
Y.Y. Gomeniuk ◽  
Y.V. Gomeniuk ◽  
A. Nazarov ◽  
P.K. Hurley ◽  
Karim Cherkaoui ◽  
...  

The paper presents the results of electrical characterization of MOS capacitors and SOI MOSFETs with novel high-κ LaLuO3 dielectric as a gate oxide. The energy distribution of interface state density at LaLuO3/Si interface is presented and typical maxima of 1.2×1011 eV–1cm–2 was found at about 0.25 eV from the silicon valence band. The output and transfer characteristics of the n- and p-MOSFET (channel length and width were 1 µm and 50 µm, respectively) are presented. The front channel mobility appeared to be 126 cm2V–1s–1 and 70 cm2V–1s–1 for n- and p-MOSFET, respectively. The front channel threshold voltages as well as the density of states at the back interface are presented.


1998 ◽  
Vol 510 ◽  
Author(s):  
P.N.K. Deenapanray ◽  
F.D. Auret ◽  
M.C. Ridgway ◽  
S.A. Goodman ◽  
G. Myburg

AbstractWe report on the electrical properties of defects introduced in epitaxially grown n-Si by 1 keV He-, Ne-, and Ar-ion bombardment. Epitaxial layers with different O contents were used in this study. We demonstrate using deep level transient spectroscopy that the low energy ions introduced a family of similarly structured defects (DI) with electronic levels at ∼0.20 eV below the conduction band. The introduction of this set of identical defects was not influenced by the presence of O. Ion bombardment of O-rich Si introduced another family of prominent traps (D2) with levels close to the middle of the band gap. Both sets of defects were thermally stable up to ∼400 °C, and their annealing was accompanied by the introduction of a family of secondary defects (D3). The “D3” defects had levels at ∼0.21 eV below the conduction band and were thermally stable at 650 °C. We have proposed that the “DI”, “D2”, and “D3” defects are higherorder vacancy clusters (larger than the divacancy) or complexes thereof.


2015 ◽  
Vol 54 (11) ◽  
pp. 111301 ◽  
Author(s):  
Tetsuo Hatakeyama ◽  
Mitsuru Sometani ◽  
Kenji Fukuda ◽  
Hajime Okumura ◽  
Tsunenobu Kimoto

2014 ◽  
Vol 778-780 ◽  
pp. 418-423 ◽  
Author(s):  
Hironori Yoshioka ◽  
Takashi Nakamura ◽  
Junji Senzaki ◽  
Atsushi Shimozato ◽  
Yasunori Tanaka ◽  
...  

We focused on the inability of the common high-low method to detect very fast interface states, and developed methods to evaluate such states (CψS method). We have investigated correlation between the interface state density (DIT) evaluated by the CψS method and MOSFET performance, and found that the DIT(CψS) was well reflected in MOSFET performance. Very fast interface states which are generated by nitridation restricted the improvement of subthreshold slope and field-effect mobility.


2008 ◽  
Vol 600-603 ◽  
pp. 755-758 ◽  
Author(s):  
Fredrik Allerstam ◽  
Einar Ö. Sveinbjörnsson

This study is focused on characterization of deep energy-level interface traps formed during sodium enhanced oxidation of n-type Si face 4H-SiC. The traps are located 0.9 eV below the SiC conduction band edge as revealed by deep level transient spectroscopy. Furthermore these traps are passivated using post-metallization anneal at 400°C in forming gas ambient.


2002 ◽  
Vol 742 ◽  
Author(s):  
Hiroshi Yano ◽  
Taichi Hirao ◽  
Tsunenobu Kimoto ◽  
Hiroyuki Matsunami

ABSTRACTThe interface properties of MOS capacitors and MOSFETs were characterized using the (0001), (1120), and (0338) faces of 4H-SiC. (0001) and (1120) correspond to (111) and (110) in cubic structure. (0338) is semi-equivalent to (100). The interface states near the conduction band edge are discussed based on the capacitance and conductance measurements of n-type MOS capacitors at a low temperature and room temperature. The (0338) face indicated the smallest interface state density near the conduction band edge and highest channel mobility in n-channel MOSFETs among these faces.


2000 ◽  
Vol 622 ◽  
Author(s):  
G.Y. Chung ◽  
C.C. Tin ◽  
J. R. Williams ◽  
K. McDonald ◽  
M. Di Ventra ◽  
...  

ABSTRACTResults are reported for the passivation of interface states near the conduction band edge in n-4H-SiC using post-oxidation anneals in nitric oxide, ammonia and forming gas (N2/5%H2). Anneals in nitric oxide and ammonia reduce the interface state density significantly, while forming gas anneals are largely ineffective. Results suggest that interface states in SiO2/SiC and SiO2/Si have different origins, and a model is described for interface state passivation by nitrogen in the SiO2/SiC system. The inversion channel mobility of 4H-SiC MOSFETs increases with the NO annealing.


Sign in / Sign up

Export Citation Format

Share Document