Role of Recrystallized Grains on the Environment-Assisted Cracking of Aluminium-Alloy

2013 ◽  
Vol 753 ◽  
pp. 489-492
Author(s):  
M. Bobby Kannan

In this study, the role of recystrallized grains on the environment-assisted cracking (EAC) susceptibility of a high strength aluminium alloy (Al-Zn-Mg-Cu) was examined using slow strain rate testing (SSRT) and U-bend test methods in chloride-containing solution. Experimental results suggest that the recrystallized grains in the peak-aged alloy are more prone to EAC. However, by altering the morphology and chemistry of the grain boundary precipitates of the recrystallized grains by overaging heat treatment, the alloy susceptibility to EAC reduced significantly.

2010 ◽  
Vol 138 ◽  
pp. 1-6 ◽  
Author(s):  
M. Bobby Kannan ◽  
V.S. Raja

This paper brings out the developments on heat-treatment and alloying to improve the stress corrosion cracking (SCC) behavior of 7010 Al-alloy. The role of microstructures including the grain boundary precipitates and recystallized grains and the relation of intergranular corrosion (IGC) on the SCC behavior of 7010 Al-alloy have been discussed.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


2009 ◽  
Vol 423 ◽  
pp. 105-112 ◽  
Author(s):  
I. Torca ◽  
A. Aginagalde ◽  
J.A. Esnaola ◽  
L. Galdos ◽  
Zigor Azpilgain ◽  
...  

Aluminium alloys are more and more important for the automotive industry due to their high strength to weight ratio and their elevated ductility; they are used for many different parts in automobiles as exterior panels, structural parts, brake housings and others. However, their formability at room temperature is limited. This inconvenient can be improved by increasing the forming temperature of the part. That lack of formability has lead to this research project dealing with the tensile behaviour of aluminium alloys sheets, at different conditions of temperature and strain rate. The analyzed material has been 6082 aluminium alloy, under two different heat treatment conditions (O and T6). Material testing has been carried out in a temperature range between room temperature and 250°C, and a strain rate range between 0.001s-1 and 0.1s-1. Testing samples have been obtained from laminated sheet of 1.5mm thickness. This article shows that the alloy under T6 condition has a reduced formability, even in warm conditions. In order to get higher deformation values an annealed condition is proposed to form the material. The effect of T6 heat treatment and O annealing treatment in the uniaxial warm formability is discussed and a microstructural analysis is also presented in order to understand the differences on the alloy behaviour.


2014 ◽  
Vol 783-786 ◽  
pp. 485-490
Author(s):  
De Bin Shan ◽  
X.Z. Han ◽  
Wen Chen Xu

The isothermal forging process of a bracket and its microstructure evolution of Mg-10Gd-2Y-0.5Zn-0.3Zr alloy have been investigated in the present study. The results show that the bracket with thin-web and high-rib is well formed through modifying corners and adding an active damping block into male die. Amounts of lamellae and particles distribute uniformly on the matrix after the isothermal forging process and ageing process. The isothermal forging process has an obvious effect on the precipitation behaviour of secondary phases, while it did not change the grain size greatly. With the increase of ageing time, more secondary phases precipitate from α-Mg matrix until 60h. The optimal ultimate tensile strength and elongation of the peak-aged alloy are 382MPa and 4.03%, respectively. The combined effects of LPO and β′ phases contribute to the high strength of the peak-aged alloy.


2015 ◽  
Vol 782 ◽  
pp. 124-129
Author(s):  
Wen Wen Du ◽  
Qian Wang ◽  
Lin Wang ◽  
Ding Wang

The high strength steel which was subjected with isothermal heat treatment at three different temperatures, namely 330°C, 350°Cand 380°C after different quenching temperature namely 880°C and 900°C,was investigated in this paper. The quasi-static and dynamic mechanical properties of new high strength steel was tested by universal material testing machine and Split Hopkinson Pressure Bar (SHPB). Experimental results have showed that the yield strength and tensile strength of the steel reach 1100MPa and 1400MPa respectively. Hardness, yield strength and toughness are found to decrease with the consequently increasing of isothermal temperature under the same quenching temperature. The compression properties of the steel under quenching temperature of 880°C are higher than that of 900°C with the same isothermal temperature. It can be found that the steel which is subjected with isothermal heat treatment show strain rate sensitivity under high velocity impact. When isothermal temperature is set 380°C, the steel exhibits the most obvious strain rate hardening effect.


Sign in / Sign up

Export Citation Format

Share Document