Effect of Austenite Grain Size on the Mechanical Properties in Air-Cooled 0.1C-5Mn Martensitic Steel

2014 ◽  
Vol 783-786 ◽  
pp. 1027-1032 ◽  
Author(s):  
Toshihiro Hanamura ◽  
Shiro Torizuka ◽  
Soutaro Tamura ◽  
Shohei Enokida ◽  
Hiroshi Takech

In 0.1C-5Mn steels, 5%Mn addition increases hardening ability and makes 100% martensitic transformation even in air cooling without water quenching. Their Ms and Mf temperatures are in the range of 350-250°C, and subzero treatment is not needed. This makes it possible to measure Ms and Mf temperatures accurately by dilatometry. Utilizing a newly developed experimental technique that makes it possible to examine phase transformation behavior and conduct tensile testing with the same specimen, we examined these relationships with identical specimens and obtained the following results. Ms temperature decreases as much as 40 K with a decrease in austenite grain size from 254 to 30 m. Regarding martensite structure, the packet size and the block length decrease, while the lath width does not change, with the refinement of austenite grain size by about one tenth. True stress - true strain curves obtained up to fracture elucidates that the austenite refinement substantially improves true fracture strength and greatly increases true fracture strain of martensite, potentially invalidating the conventional concept of a trade-off balance between strength and ductility.

2019 ◽  
Vol 944 ◽  
pp. 357-363
Author(s):  
Xiao Dong Zhang ◽  
Dian Xiu Xia ◽  
Shou Ren Wang

The effect of austenitizing temperature on the quenching microstructure and properties of 51CrV4 steel was studied. The results show that with the increase of austenitizing temperature, the austenite grains grow gradually. After quenching, the hardness increased first and then decreased, and the strength increased first and then decreased after tempering at 460°C. When the austenitizing temperature was 880°C, the austenite grains were fine and uniform, about 16μm, the martensite structure was dense, the strength and hardness reached maximum. When the austenitizing temperature was 910°C, the decarburization phenomenon was obvious, and the strength, hardness and plasticity of the test steel decreased obviously. When the austenitizing temperature exceeded 910°C, the austenite grains grow sharply and some grains were abnormally coarse. The austenite grain size reached 20μm and the microstructure was coarser at austenitizing temperature of 950°C. Therefore, in order to ensure uniform grain size and no decarburization under the premise of complete austenitization, the best austenitizing temperature of 51CrV4 steel for good properties is 880°C.


Author(s):  
M.G. Burke ◽  
R.M. Fix ◽  
A.J. DeArdo

Recrystallization controlled rolling (RCR) has been developed as an economically viable alternative to conventional controlled rolling, a thermomechanica1 processing treatment currently employed in the steel industry. RCR processing involves deformation below the austenite grain coarsening temperature of the steel, followed by accelerated cooling to an intermediate temperature and air cooling to room temperature. The V-Ti-N system is well-suited to RCR processing because Ti (in the form of TiN precipitates) promotes a fine reheated austenite grain size while the V in solution in the austenite will be available for subsequent precipitation in the ferrite. The precipitation potential of V-Ti steels has been shown to increase with increasing N content and cooling rate.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 324
Author(s):  
David San-Martin ◽  
Matthias Kuntz ◽  
Francisca G. Caballero ◽  
Carlos Garcia-Mateo

This investigation explores the influence of the austenitisation heat treatment and thus, of the prior austenite grain size (PAGS), on the kinetics of the bainitic transformation, using as A case study two high-carbon, high-silicon, bainitic steels isothermally transformed (TIso = 250, 300, 350 °C), after being austenised at different temperatures (γTγ = 925–1125 °C). A methodology, based on the three defining dilatometric parameters extracted from the derivative of the relative change in length, was proposed to analyse the transformation kinetics. These parameters are related to the time to start bainitic transformation, the time lapse for most of the transformation to take place and the transformation rate at the end of the transformation. The results show that increasing the PAGS up to 70 µm leads to an increase in the bainite nucleation rate, this effect being more pronounced for the lowest TIso. However, the overall transformation kinetics seems to be weakly affected by the applied heat treatment (γTγ and TIso). In one of the steels, PAGS > 70 µm (γTγ > 1050 °C), which weakly affects the progress of the transformation, except for TIso = 250 °C, for which the enhancement of the autocatalytic effect could be the reason behind an acceleration of the overall transformation.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2021 ◽  
Vol 809 ◽  
pp. 140972
Author(s):  
Jin-Young Lee ◽  
Jin-Sung Hong ◽  
Seok-Hyeon Kang ◽  
Young-Kook Lee

2020 ◽  
Vol 837 ◽  
pp. 74-80
Author(s):  
Jun Yuan ◽  
Zhen Yu Han ◽  
Yong Deng ◽  
Da Wei Yang

In view of the special requirements of rails to ensure the safe and stable operation of Railways in China, the formation characteristics of austenite grains in high carbon rail are revealed through industrial exploration, the process of industrial rail heating and rolling is simulated, innovative experimental research methods such as different heating and heat treatment are carried out on the actual rails in the laboratory. Transfer characteristics of austenite grain size, microstructures and key properties of high carbon rail during the process are also revealed. The results show that the austenite grain size of industrial produced U75V rail is about 9.0 grade. When the holding temperature is increased from 800 C to 1300 C, the austenite grain size of high carbon rail steel decreases, the austenite grain are gradually coarsened, and the tensile strength increases slightly. The tensile strength is affected by the heating temperature. With the increase of heating temperature, the elongation and impact toughness of high carbon rail decrease. The heating temperature of high carbon rail combined with austenite grain size shows that the heating temperature has a great influence on austenite grain size, and has the most obvious influence on the toughness of high carbon rail.


Sign in / Sign up

Export Citation Format

Share Document