On the Stress Development in SA508 Autogenous Weld

2014 ◽  
Vol 783-786 ◽  
pp. 2123-2128 ◽  
Author(s):  
Hamidreza Abdolvand ◽  
Mike Keavey ◽  
H. Dai ◽  
Alison Mark ◽  
N. O’Meara ◽  
...  

Considering the significant role that residual stresses play in determining the lifetime-service of materials, it is mandatory to have a good understanding of and a means of predicting those that develop during welding processes. For this purpose, a User MATerial subroutine (UMAT) is developed to study the effects of various parameters that influence solid state phase transformations and residual stress evolution during welding of SA508 ferritic steel. The temperature dependent elastic and kinematic hardening parameters for each of the individual phases that can potentially develop during cooling from elevated temperatures are measured and are used for calculating stress development during low (75 mm/min) and high (300 mm/min) speed gas-tungsten arc welding (GTAW) on SA508 grade 3. These two speeds are selected to cover a wide range of cooling rates in the heat affected zone so that different phase proportions would be present. The results of the numerical simulations for residual stresses are compared against those measured by neutron diffraction. It is shown here that a low speed weld results in bainite formation whereas a high speed weld results in bainitic as well as subsequent martensitic phase transformations where each welding rate results in different residual stress development.

2011 ◽  
Vol 681 ◽  
pp. 79-84 ◽  
Author(s):  
A.M.Akbari Pazooki ◽  
M.J.M. Hermans ◽  
I.M. Richardson

Dual phase steel consists of martensite embedded in a ferrite matrix. The material experiences high heating and cooling rates during welding, which alter the microstructure significantly. In this work the effects of solid state phase transformations on the prediction of residual stresses and distortion during welding of DP600 steel is investigated. Phase fractions have been calculated implicitly using continuous cooling time (CCT) diagrams. The results of the model are compared with experimental measurements for bead-on-plate welds made on DP600 sheets. It is found that the volume changes and the increase of the strength due to the martensitic transformation have both a significant effect on the residual stress and distortion level although in opposite directions. Martensitic phase transformations in DP600 steel tend to reduce tensile residual stresses in the weld metal.


Author(s):  
N U Dar ◽  
E M Qureshi ◽  
A M Malik ◽  
M M I Hammouda ◽  
R A Azeem

In recent years, the demand for resilient welded structures with excellent in-service load-bearing capacity has been growing rapidly. The operating conditions (thermal and/or structural loads) are becoming more stringent, putting immense pressure on welding engineers to secure excellent quality welded structures. The local, non-uniform heating and subsequent cooling during the welding processes cause complex thermal stress—strain fields to develop, which finally leads to residual stresses, distortions, and their adverse consequences. Residual stresses are of prime concern to industries producing weld-integrated structures around the globe because of their obvious potential to cause dimensional instability in welded structures, and contribute to premature fracture/failure along with significant reduction in fatigue strength and in-service performance of welded structures. Arc welding with single or multiple weld runs is an appropriate and cost-effective joining method to produce high-strength structures in these industries. Multi-field interaction in arc welding makes it a complex manufacturing process. A number of geometric and process parameters contribute significant stress levels in arc-welded structures. In the present analysis, parametric studies have been conducted for the effects of a critical geometric parameter (i.e. tack weld) on the corresponding residual stress fields in circumferentially welded thin-walled cylinders. Tack weld offers considerable resistance to the shrinkage, and the orientation and size of tacks can altogether alter stress patterns within the weldments. Hence, a critical analysis for the effects of tack weld orientation is desirable.


2021 ◽  
Author(s):  
KHATEREH KASHMARI ◽  
PRATHAMESH DESHPANDE ◽  
SAGAR PATIL ◽  
SAGAR SHAH ◽  
MARIANNA MAIARU ◽  
...  

Polymer Matrix Composites (PMCs) have been the subject of many recent studies due to their outstanding characteristics. For the processing of PMCs, a wide range of elevated temperatures is typically applied to the material, leading to the development of internal residual stresses during the final cool-down step. These residual stresses may lead to net shape deformations or internal damage. Also, volumetric shrinkage, and thus additional residual stresses, could be created during crystallization of the semi-crystalline thermoplastic matrix. Furthermore, the thermomechanical properties of semi-crystalline polymers are susceptible to the crystallinity content, which is tightly controlled by the processing parameters (processing temperature, temperature holding time) and material properties (melting and crystallization temperatures). Hence, it is vital to have a precise understanding of crystallization kinetics and its impact on the final component's performance to accurately predict induced residual stresses during the processing of these materials. To enable multi-scale process modeling of thermoplastic composites, molecular-level material properties must be determined for a wide range of crystallinity levels. In this study, the thermomechanical properties and volumetric shrinkage of the thermoplastic Poly Ether Ether Ketone (PEEK) resin are predicted as a function of crystallinity content and temperature using molecular dynamics (MD) modeling. Using crystallization-kinetics models, the thermo-mechanical properties are directly related to processing time and temperature. This research can ultimately predict the residual stress evolution in PEEK composites as a function of processing parameters.


Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


2010 ◽  
Vol 638-642 ◽  
pp. 3769-3774 ◽  
Author(s):  
Arne Kromm ◽  
Thomas Kannengiesser ◽  
Jens Gibmeier

Tensile residual stresses introduced by conventional welding processes diminish the crack resistance and the fatigue lifetime of welded components. In order to generate beneficial compressive residual stresses at the surface of a welded component, various post-weld treatment procedures are available, like shot peening, hammering, etc. These post-weld treatments are, however time and cost extensive. An attractive alternative is to generate compressive stresses over the complete weld joint in the course of the welding procedure by means of so-called Low Transformation Temperature (LTT) filler materials. The volume change induced by the transformation affects the residual stresses in the weld and its vicinity. LTT fillers exhibit a relatively low transformation temperature and a positive volume change, resulting in compressive residual stresses in the weld area. In-situ measurements of diffraction profiles during real welding experiments using Gas Tungsten Arc (GTA)-welding process were realized successfully for the first time. Transformation temperatures during heating and subsequent cooling of LTT welding material could be assessed by means of energy dispersive diffraction using high energy synchrotron radiation. The results show that the temperature of martensite start (Ms) is strongly dependent on the content of alloying elements. In addition the results indicate that different phase transformation temperatures are present depending on the welding depth. Additional determination of residual stresses allowed it to pull together time and temperature resolved phase transformations and the resulting phase specific residual stresses. It was shown, that for the evaluation of the residual stress state of LTT welds the coexisting martensitic and austenitic phases have to be taken into account when describing the global stress condition of the respective material in detail.


2006 ◽  
Vol 315-316 ◽  
pp. 140-144 ◽  
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao ◽  
Z.J. Lv

An orthogonal cutting model was presented to simulate high-speed machining (HSM) process based on metal cutting theory and finite element method (FEM). The residual stresses in the machined surface layer were obtained with various cutting speeds using finite element simulation. The variations of residual stresses in the cutting direction and beneath the workpiece surface were studied. It is shown that the thermal load produced at higher cutting speed is the primary factor affecting the residual stress in the machined surface layer.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella

This paper presents a fast finite element analysis (FEA) model to efficiently predict the residual stresses in a feeder elbow in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including elbow forming, Grayloc hub weld, and weld overlay application. The finite element (FE) method employs optimized FEA procedure along with three-dimensional (3-D) elastic-plastic technology and large deformation capability to predict the residual stresses due to the feeder forming and various welding processes. The results demonstrate that the fast FEA method captures the residual stress trends with acceptable accuracy and, hence, provides an efficient and practical tool for performing complicated parametric 3-D weld residual stress studies.


Author(s):  
Jinhua Shi ◽  
David Blythe

In order to ensure the integrity of a seamless butt-welding elbow, both the central section and ends of the elbow need to be assessed, as the maximum stress is normally located at the central section of the elbow but there are no welding residual stresses. Furthermore, at the ends (welds) of the elbow, very high welding residual stresses exist if the welds have not been post weld heat treated but the primary stresses induced by the internal pressure and system moments are lower. For a 90 degree elbow welded to seamless straight pipe, both maximum axial and hoop stress components in the elbow can be calculated using ASME III NB-3685. At the ends of the elbow, axial and hoop stress components can be obtained using the stress equations presented in the paper of PVP2010-25055. In this paper, a series of limiting defect assessments have been carried out on an elbow assuming a postulated axial external defect as follows: • A number of assessments have been conducted directly using the axial and hoop stresses calculated based on ASME III NB-3685 for different system moments. • A series of assessments have been carried out using the axial and hoop stresses calculated using the stress equations presented in the paper of PVP2010-25055, a wide range of welding residual stresses and different system moments. A comparison of the assessment results in the elbow and at the ends of the elbow shows that when system moments are relatively low and the welding residual stress is high, the limiting defect size is located at the ends of the elbow; when the system moments are high and the welding residual stress is low the limiting defect size is located at the central section of the elbow. Therefore, it can be concluded that when assessing an elbow, the assessments should be carried out at both the central section and the ends of the elbow, in order to ensure the integrity of the elbow.


Author(s):  
B. Zheng ◽  
H. D. Yu ◽  
X. Wang ◽  
X. M. Lai

Surface scratches and residual stresses inevitably appear on the surface of the component as a result of the machining process. The damage evolution of surface scratch due to the combined effect of cyclic loading and residual stresses will be significantly different from the case where only the cyclic loading is considered. In the damage evolution of surface scratch, the short crack growth is of great importance owing to its apparently anomalous behaviors compared with the long-crack growth. In this paper, the effect of the surface roughness and the residual stress on the short crack growth is studied. Firstly, the surface roughness and the residual stress of 7075-T6 aluminum alloy induced by the high speed milling process with various cutting speeds and feed rates are investigated with the experimental method. The maximum height roughness parameter is measured, which is regarded as the surface defect induced by the milling process. The residual stress on the specimen surface is measured with the X-ray diffraction. Results show that the surface roughness becomes higher with the increase of the feed rate. However, the influence of the cutting speed on the surface roughness is not significant. The residual stresses on the specimen surface are all in the compressive state. The residual stress is more compressive as the feed rate increases. The effects of the process parameters on the surface roughness and the residual stress are described by the fitted formulas. Then a modified model is built to characterize short fatigue crack growth behaviors with the consideration of the residual stress. This model is proved to provide a realistic treatment of the short crack growth, as reflected by comparison with experimental fatigue crack growth data of medium carbon steel and 7075-T6 aluminum alloy published in literature. The effect of surface roughness and residual stress caused by the milling process on the short crack growth is also investigated by using the proposed model. The growth of the scratch is nonlinear when it is subjected to the cyclic load. The compressive residual stress reduces the growth rate of the crack. The crack with larger initial surface roughness grows faster than that with smaller roughness. The correlation of surface roughness, residual stress and crack growth length is obtained by the polynomial fitting. The investigations in this paper can help the damage tolerance design of structures and improve the awareness of the effect of the residual stress and surface roughness induced by the machining process on the short crack growth.


2015 ◽  
Vol 60 (4) ◽  
pp. 2559-2568 ◽  
Author(s):  
W. Piekarska

The paper concerns the mathematical and numerical modeling of phase transformations in solid state occurring during welding. The analysis of the influence of heating rate, cooling rate and maximum temperatures of thermal cycles on the kinetics of phase transformations is presented. On the basis of literature data and experimental studies the evaluation of classic mathematical and numerical models of phase transformation is presented with respect to the advanced methods of welding by using a high speed and a high power heat source. The prediction of the structure composition in laser welded butt-joint made of S460 steel is performed, where phase transformations are calculated on the basis of modified numerical models. Temperature distributions are determined as well as the shape and size of fusion zone and heat affected zone (HAZ). Temperature field is obtained by the solution of transient heat transfer equation with convective term and external volumetric heat source taken into account. Latent heat of fusion, evaporation and heats generated during phase transformations in solid state are considered in the numerical algorithm due to the large temperature range present in analyzed process. Results of the numerical prediction of structure composition in HAZ are presented in this work. Obtained results of computer simulations are compared to experimental research performered on the laser welded joint.


Sign in / Sign up

Export Citation Format

Share Document