High Temperature Creep Behavior and Effects of Stacking Fault Energy in Mg-Y and Mg-Y-Zn Dilute Solid Solution Alloys

2014 ◽  
Vol 783-786 ◽  
pp. 491-496
Author(s):  
Mayumi Suzuki ◽  
Yasuyuki Murata ◽  
Kyosuke Yoshimi

Compressive creep behavior of hot-rolled (40%) Mg-Y binary and Mg-Y-Zn ternary dilute solid solution alloys are investigated in this study. Creep strength is substantially improved by the addition of zinc. Activation Energy for creep in Mg-Y and Mg-Y-Zn alloys are around 200 kJ/mol at the temperature range from 480 to 570 K. These values are higher than the activation energy for self-diffusion coefficient in magnesium (135 kJ/mol). Many stacking faults, which are planar type defects are observed on the basal planes of the magnesium matrix in Mg-Y-Zn ternary alloys. TEM observation has been revealed that the non-basal a-dislocation slip is significantly activated by these alloys. The rate controlling mechanism of Mg-Y and Mg-Y-Zn dilute alloys are considered to the cross-slip or prismatic-slip controlled dislocation creep with high activation energy for creep, more than 1.5 times higher than the activation energy for creep controlled dislocation climb.

1990 ◽  
Vol 213 ◽  
Author(s):  
Seiji Miura ◽  
Tohru Hayashi ◽  
Mitsuhiro Takekawa ◽  
Yoshinao Mishima ◽  
Tomoo Suzuki

ABSTRACTCompressive creep behavior is investigated in ternary Ni3Al single crystals containing Ti, Si, Hf and Cr with stress axes parallel to the crystallographic orientation near [001]. Then a comparison is made with the results of high temperature compression tests under a constant strain rate for the same orientation where plastic behavior is characterized by a distinct yield drop followed by steadystate deformation. It is found that the deformation mechanism for the two cases is identical, namely octahedral viscous flow being expressed by the state equation of the power-law type with a stress exponent of about 3 to 4. The effect of offstoichiometry on the creep resistance is then examined in Ni3(Al,5 at%Ti) alloys with different Ni concentrations. The results support the observation in the polycrystalline compound where the creep resistance increases with Ni concentration on both sides of stoichiometry exhibiting a discontinuity at stoichiometry. Finally, the apparent activation energy in the power-law type state equation for the steady state creep deformation is estimated for all the ternary alloys examined. They are in general in good agreement with that for diffusion of ternary elements in Ni3Al. However, the relative magnitude of the value can not simply be compared since the activation energy depends on deviations from stoichiometry.


2012 ◽  
Vol 322 ◽  
pp. 33-39 ◽  
Author(s):  
Sergei Zhevnenko ◽  
Eugene Gershman

High-temperature creep experiments were performed on a Cu-2.8 ат.% Co solid solution. Cylindrical foils of 18 micrometers thickness were used for this purpose. Creep tests were performed in a hydrogen atmosphere in the temperature range of about from 1233 K to 1343 K and at stresses lower than 0.25 MPa. For comparison, a foil of pure copper and Cu-20 at.% Ni solid solution were investigated on high temperature creep. Measurements on the Cu foil showed classical diffusional creep behavior. The activation energy of creep was defined and turned out to be equal 203 kJ/mol, which is close to the activation energy of bulk self-diffusion of copper. There was a significant increase in activation energy for the Cu-20 at.% Ni solid solution. Its activation energy was about 273 kJ/mol. The creep behavior of Cu-Co solid solution was more complicated. There were two stages of diffusional creep at different temperatures. The extremely large activation energy (about 480 kJ/mol) was determined at relatively low temperature and a small activation energy (about 105 kJ/mol) was found at high temperatures. The creep rate of Cu-Co solid solution was lower than that of pure copper at all temperatures. In addition, the free surface tension of Cu-2.8 ат.% Co was measured at different temperatures from 1242 K to 1352 K. The surface tension increases in this temperature range from 1.6 N/m to 1.75 N/m. There were no features on the temperature dependence of the surface tension.


10.30544/101 ◽  
2015 ◽  
Vol 21 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Mohsen Yousefi ◽  
Mehdi Dehnavi ◽  
S.M. Miresmaeili

The effects of 1.5, 2.5 and 3.5 wt.% Cu additions on the microstructure and creep behavior of the as-cast Al-9Si alloy were investigated by impression tests. The tests were performed at temperature ranging from 493 to 553 K and under punching stresses in the range 300 to 414 MPa for dwell times up to 3000 seconds. The results showed that, for all loads and temperatures, the Al–9Si–3.5Cu alloy had the lowest creep rates and thus, the highest creep resistance among all materials tested. This is attributed to the formation of hard intermetallic compound of Al2Cu, and higher amount of α-Al2Cu eutectic phase. The stress exponent and activation energy are in the ranges of 5.2- 7.2 and 115 -150 kJ/ mol, respectively for all alloys. According to the stress exponent and creep activation energies, the lattice and pipe diffusion- climb controlled dislocation creep were the dominant creep mechanism.


2001 ◽  
Author(s):  
F. Hua ◽  
C. M. Garner ◽  
H. G. Song ◽  
J. W. Morris

Abstract This study reports results of shear creep behavior of four Pb-free solders, Sn-3Ag-0.5Cu, Sn-3.5Ag, Sn-0.7Cu and Sn-10In-3.1Ag at 95θC and 130θC. At the stress levels tested, all the four solders showed the stress components close or larger than 5, typical for matrix creep. The calculated activation energies for Sn-0.7Cu, Sn-3.5Ag and Sn-3Ag-0.5Cu are from 103kJ/mol to 117kJ/mol, which are very close to the pure Sn self-diffusion activation energy (107kJ/mol). It suggested that the creep process is controlled by Sn bulk self-diffusion rate. The creep activation energy for Sn-10In-3.1Ag is higher in the range of 173–193kJ/mol. The Sn-0.7Cu, Sn-3Ag-0.5Cu and Sn-10In-3.1Ag solder joints were also prepared with two different cooling rates, 3.5θC/min. (furnace-cooling) and 2.7θC/S (air-cooling) and tested at 130θC. It was observed that faster cooled solder joints have faster creep strain rates than slower cooled solder joints at the stress levels tested for all three solders, due to the fine and even distribution of intermetallic particles.


1957 ◽  
Vol 24 (2) ◽  
pp. 207-213
Author(s):  
H. Laks ◽  
C. D. Wiseman ◽  
O. D. Sherby ◽  
J. E. Dorn

Abstract Experimental investigations on pure aluminum and its dilute solid-solution alloys revealed that the high-temperature creep rate ϵ̇ is related to the stress σ by ϵ̇ ∼ σn for low stresses and ϵ̇ ∼ eBσ for high stresses where n and B are constants independent of the creep strain and temperature. According to a preliminary dislocation-climb model for high-temperature creep, the activation energy for creep is that for self-diffusion, the effect of stress on the creep rate depends on the number of active Frank-Read sources, and the rate of climb depends on the structure as determined by the pattern of climbing dislocations. Many of the experimental observations on high-temperature creep can be accounted for by this model.


2010 ◽  
Vol 638-642 ◽  
pp. 1602-1607 ◽  
Author(s):  
Mayumi Suzuki ◽  
Kouichi Maruyama

Compressive creep behavior of hot-rolled (40%) Mg-Y and Mg-Y-Zn alloys are investigated at 480 ~ 650 K. Creep strength is substantially improved by the simultaneous addition of yttrium and zinc. The minimum creep rate of Mg-0.9mol%Y-0.04mol%Zn (WZ301) alloy decreases to 1/10 lower than that of Mg-1.1mol%Y (W4) alloy at 650 K. Activation energy for creep in W4 and WZ301 alloys are more than 200 kJ/mol at the temperature range of 480 ~ 550 K. These values are higher than the activation energy for self-diffusion coefficient in magnesium (135 kJ/mol). Many stacking faults (planar defects, PDs) are only observed on the basal planes of the matrix in Mg-Y-Zn ternary alloys. Stacking fault energy is considered to decrease by the multiple-addition of yttrium and zinc. The size and density of these planar defects depend on solute content, aging condition. TEM observation has been revealed that the decreasing of the stacking fault energy affects the distribution of dislocations during creep. Many a-dislocations on basal planes are extended significantly. Dislocation motion is restricted significantly by both of these two types of stacking faults (planar type and extended dislocations).


2010 ◽  
Vol 46 (6) ◽  
pp. 715-722 ◽  
Author(s):  
Furong CAO ◽  
Renguo GUAN ◽  
Hua DING ◽  
Yinglong LI ◽  
Ge ZHOU ◽  
...  

Transient creep following stress reductions has been analysed by the method described by McLean (1980) to determine the friction stress σ 0 as a function of temperature and directional solidification conditions for the γ-γ'-Cr 3 Cr 2 in-situ composite and for the γ-γ' matrix alloy. These values of σ 0 are identical to the flow stresses at creep strain rates and can be identified with the sums of the barriers to dislocation motion through the matrix by climb around γ'-particles and Orowan bowing between the carbide fibres. The friction stress and the kinetics of deformation of the composite are determined by the matrix behaviour, whereas its creep strength depends on the distribution of stress between fibre and matrix. When the steady-state creep behaviour of γ-γ'-Cr 3 C 2 is analysed by using the usual power law description in terms of the effective stress σ — σ 0 , rather than the applied stress σ, the stress exponent is ca 4 and the activation energy is similar to the activation energy of self-diffusion for nickel. The results provide strong evidence for the operation of recovery-creep in both the composite and matrix alloys.


2009 ◽  
Vol 289-292 ◽  
pp. 775-782 ◽  
Author(s):  
Zbigniew Jurasz ◽  
Krzysztof Adamaszek ◽  
Romuald Janik ◽  
Zbigniew Grzesik ◽  
Stanisław Mrowec

Detailed investigations of nonstoichiometry as well as chemical and self-diffusion in nickel oxide have shown that doubly ionised cation vacancies and electron holes are the predominant defects in this material. The present work is an attempt to demonstrate that aliovalent impurities (Cr, Al, Na and Li) may considerably influence the concentration of these defects and, consequently, the oxidation rate of nickel at high temperatures. It has been shown that small amounts of tri-valent impurities (Cr, Al) bring about an increase of the oxidation rate, while mono-valent ones (Li, Na) decrease the rate of oxidation. These phenomena may satisfactorily be explained in terms of a doping effect. All experiments have been carried out as a function of temperature (1373-1673 K) and oxygen pressure (1-105 Pa) and consequently, it was possible to determine the influence of impurities not only on the oxidation rate but also on the activation energy of reaction and its pressure dependence. The results of these investigations could again be elucidated in terms of doping effect.


Sign in / Sign up

Export Citation Format

Share Document