Friction Stir Welding of Ti-6Al-4V Alloy

2014 ◽  
Vol 783-786 ◽  
pp. 574-579 ◽  
Author(s):  
Paola Leo ◽  
Emanuela Cerri

Titanium (Ti) and its alloys are used extensively in aerospace industry where there is a critical need for material with high strength-to–weight ratio and high elevate temperature properties. Friction stir welding (FSW) is a new solid state welding process in which a cylindrical–shouldered tool with an extended pin is rotated and gradually plunged into the joint between the workpieces to be welded. The material is frictionally heated to a temperature at which it becomes more plastic but no melting of the blanks to be welded is reached therefore the presence of defects typically observed in and close to the welding seam is strongly reduced. The final result is the improvement of the mechanical performances of the welded joints even in some materials with poor fusion weldability. In this paper the authors analyze the microstructure of FSW joints of Ti-6Al-4V processed at the same travel speed (50 mm/min) and at different rotation speed (300-500rpm). The microstructure of base material (BM) is not homogenous. It is characterized by distorted α/ β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the as received state, without any previous heat treatment. The microstructure of the transverse section of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed while in the center of the joints the microstructure is mixed and less refined.

2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1937 ◽  
Author(s):  
Tomasz Machniewicz ◽  
Przemysław Nosal ◽  
Adam Korbel ◽  
Marek Hebda

The paper describes the influence of the friction stir welding travel speed on the mechanical properties of the butt joints of copper plates. The results of static and fatigue tests of the base material (Cu-ETP R220) and welded specimens produced at various travel speeds were compared, considering a loading applied both parallel and perpendicularly to the rolling direction of the plates. The mechanical properties of the FSW joints were evaluated with respect to parameters of plates’ material in the delivery state and after recrystallisation annealing. The strength parameters of friction stir welding joints were compared with the data on tungsten inert gas welded joints of copper plates available in the literature. The results of microhardness tests and fractographic analysis of tested joints are also presented. Based on the above test results, it was shown that although in the whole range of considered traverse speeds (from 40 to 80 mm/min), comparable properties were obtained for FSW copper joints in terms of their visual and microstructural evaluation, their static and especially fatigue parameters were different, most apparent in the nine-fold greater observed average fatigue life. The fatigue tests turned out to be more sensitive criteria for evaluation of the FSW joints’ qualities.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Assefa Asmare ◽  
Raheem Al-Sabur ◽  
Eyob Messele

The use of aluminum alloys, nowadays, is swiftly growing from the prerequisite of producing higher strength to weight ratio. Lightweight components are crucial interest in most manufacturing sectors, especially in transportation, aviation, maritime, automotive, and others. Traditional available joining methods have an adverse effect on joining these lightweight engineering materials, increasing needs for new environmentally friendly joining methods. Hence, friction stir welding (FSW) is introduced. Friction stir welding is a relatively new welding process that can produce high-quality weld joints with a lightweight and low joining cost with no waste. This paper endeavors to deals with optimizing process parameters for quality criteria on tensile and hardness strengths. Samples were taken from a 5 mm 6061-T6 aluminum alloy sheet with butt joint configuration. Controlled process parameters tool profile, rotational speed and transverse speed were utilized. The process parameters are optimized making use of the combination of Grey relation analysis method and L9 orthogonal array. Mechanical properties of the weld joints are examined through tensile, hardness, and liquid penetrant tests at room temperature. From this research, rotational speed and traverse speed become significant parameters at a 99% confidence interval, and the joint efficiency reached 91.3%.


2019 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Ibrahim Sabry ◽  
Ahmed M. El-Kassas ◽  
Abdel-Hamid I. Mourad ◽  
Dinu Thomas Thekkuden ◽  
Jaber Abu Qudeiri

T-welded joints are commonly seen in various industrial assemblies. An effort is made to check the applicability of friction stir welding for producing T-joints made of AA6063-T6 using a developed fixture. Quality T-joints were produced free from any surface defects. The effects of three parameters, such as the speed of rotation of the tool, axial force, and travel speed were analyzed. Correspondingly, mechanical characteristics such as tensile strength, hardness in three zones (thermal heat affected zone, heat affected zone, and nugget zone) and temperature distribution were measured. The full factorial analysis was performed with various combinations of parameters generated using factorial design and responses. Evident changes in the strength, hardness, and temperature profile were noticed for each combination of parameters. The three main parameters were significant in every response with p-values less than 0.05, indicating their importance in the friction stir welding process. Mathematical models developed for investigated responses were satisfactory with high R-sq and least percentage error.


2021 ◽  
Vol 40 ◽  
pp. 1-11
Author(s):  
Gagandeep Singh ◽  
Khushdeep Goyal ◽  
Baljinder Ram ◽  
Bal Krishan

In this research paper, two different metal plates of aluminum alloy viz. AA6061 and AA6101 were welded with friction stir welding process. Round tool and square tool pin profiles were used to weld the alloys. Weld microstructures, hardness, and tensile properties were evaluated in as-welded condition. The tensile strength of the joints fabricated with round tool pin profile were lower than the square tool pin profile because of the pulsating effect, in square tool pin profile this effect was produced along with the higher frictional forces. The micro-hardness of friction stir zone was higher than the base material due to active recrystallization occurrence which resulted in fine grain size in case of weld joint with round pin profile. Microstructure indicated uniformly distribution of materials with minimum heat affected zone and dense welded zone without any defects.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 621 ◽  
Author(s):  
Haitao Luo ◽  
Tingke Wu ◽  
Peng Wang ◽  
Fengqun Zhao ◽  
Haonan Wang ◽  
...  

Friction stir welding (FSW) material flow has an important influence on weld formation. The finite element model of the FSW process was established. The axial force and the spindle torque of the welding process were collected through experiments. The feasibility of the finite element model was verified by a data comparison. The temperature field of the welding process was analyzed hierarchically. It was found that the temperature on the advancing side is about 20 °C higher than that on the retreating side near the welding seam, but that the temperature difference between the two sides of the middle and lower layers was decreased. The particle tracking technique was used to study the material flow law in different areas of the weld seam. The results showed that part of the material inside the tool pin was squeezed to the bottom of the workpiece. The material on the upper surface tends to move downward under the influence of the shoulder extrusion, while the material on the lower part moves spirally upward under the influence of the tool pin. The material flow amount of the advancing side is higher than that of the retreating side. The law of material flow reveals the possible causes of the welding defects. It was found that the abnormal flow of materials at a low rotation speed and high welding speed is prone to holes and crack defects. The forming reasons and material flow differences in different regions are studied through the microstructure of the joint cross section. The feasibility of a finite element modeling and simulation analysis is further verified.


2020 ◽  
Vol 10 (24) ◽  
pp. 9103
Author(s):  
Hwanjin Kim ◽  
Kwangjin Lee ◽  
Jaewoong Kim ◽  
Changyeon Lee ◽  
Yoonchul Jung ◽  
...  

In the existing automobile manufacturing process, metal inert gas (MIG) and tungsten inert gas (TIG) welding are mainly used. These welding methods are fusion welding, and the heat input in the welding area is very high. Therefore, the deformation of the base material is large, and the residual stress in the vicinity of the welded area is high, resulting in the problem of reduced mechanical strength. In this study, friction stir welding (FSW) was applied to the welding process of the structure constituting the battery frame of a newly developing electric vehicle to compensate for this problem. The welded part is the fillet joint of the side frame and the bottom frame, and experiments and numerical analysis were performed on the welding deformation and residual stress of the full frame structure. A specially manufactured angle head was used for friction stir welding of the fillet joint of extruded type aluminum, not the existing solid type. The optimum process was derived through experiments, and the temperature of the welding center was derived through test correlation between the value of measured temperature and the finite element model. The final deformation result was verified by comparing it with the measured value using a dial indicator. It is expected that the proposed thermal elasto-plastic analysis method will reduce the testing period and the cost of the manufacturing process and increase productivity.


2018 ◽  
Vol 38 (3) ◽  
pp. 352-359
Author(s):  
Zeng Gao ◽  
Jianguang Feng ◽  
Huanyu Yang ◽  
Jukka Pakkanen ◽  
Jitai Niu

Using friction stir welding, the electronic container box and lid made from aluminium matrix composites with reinforcement of SiC particle (15 vol% SiCp/Al-MMCs) was welded successfully with T-joint. The temperature distribution of box during the process, mechanical property and microstructure of the joint as well as gas tightness of welded box was investigated. The experimental results indicated that the satisfactory T-joint can be obtained under appropriate friction stir welding parameters. During the welding process, the bottom center, which was used to place the electronic component, reached a quite lower temperature of 100°C. That can ensure safety of components in the box. After the welding process, the microstructure in stir zone was better than in base material due to the refining and homogeneous distribution of the SiC particles. The experimental results showed that the electronic container box after friction stir welding had gas tightness. The He-leakage rate was under 10-8 Pa•m3/s.


2021 ◽  
Author(s):  
Bazani Shaik ◽  
Gosala Harinath Gowd ◽  
Bandaru Durga Prasad

Today is an era of metals including Aluminum alloys owing to a fundamental paradigm shift in research objectives. In addition to superior performance and lightweight criteria that are used to define the innovations of yore, scientists today are compelled to take into consideration the environment-friendliness of the new and novel materials being developed due to the concerns of maintaining a sustainable and safe existence. The solid-state Friction stir welding process has immense potential in the areas of automobiles, aerospace and construction industries due to its overwhelming advantages over the conventional fusion welding process of aluminum alloys. The thesis presents an experimental investigation of friction stir welding of dissimilar aluminum alloys AA7075T651 and AA6082T651. Mathematical modeling equations are developed to predict the tensile strength, impact strength, elongation, and micro-hardness of the dissimilar FSW joints AA7075T651 and AA6082T651. The process parameters are optimized for maximum tensile strength and hardness values. Post weld heat treatment is conducted and the metallurgical properties of the FS welded AA7075T651 and AA6082T651 are presented for different combinations of tool rotational speeds. Aluminum and its alloys are widely used in nonferrous alloys for many industrial applications. Aluminum exhibits a combination of an excellent mechanical strength with lightweight and thus it is steadily replacing steel in industrial applications where the strength to weight ratio plays a significant role. In conventional welding, the joining of aluminum is mainly associated with a high coefficient of thermal expansion, solidification shrinkage and dissolution of harmful gases in the molten metal during welding. The weld joints are also associated with segregation of secondary alloys and porosities which are detrimental to the joint qualities. Friction Stir Welding (FSW) and Friction Welding (FW) are the most popular emerging solid welding techniques in aircraft and shipbuilding industries. FSW is mainly used for the joining of metal plates and FW is mainly used for the joining of rods. Both techniques are suitable for high strength material having less weight. These techniques are environmentally friendly and easy to execute. Hence, the study of these techniques can contribute much to the field of green technology. This research work is dealt with the experimental and numerical investigations on FSW and FW of aluminum alloys.


Author(s):  
Akshansh Mishra ◽  
Adarsh Tiwari ◽  
Mayank Kumar Shukla ◽  
A. Razal Rose

A relatively new joining process, friction stir welding (FSW) produces no fumes; uses no filler material; and can join aluminium alloys, copper, magnesium, zinc, steels, and titanium. FSW sometimes produces a weld that is stronger than the base material. The tool geometry plays a critical role in material flow and governs the transverse rate at which FSW can be conducted. The tool serves three primary functions, i.e., (a) heating of the work piece, (b) movement of material to produce the joint, and (c) containment of the hot metal beneath the tool shoulder. Heating is created within the work piece by friction between both the rotating tool pin and shoulder and by severe plastic deformation of the work.


Sign in / Sign up

Export Citation Format

Share Document