Preparation of Drug Loaded Polyurethane Thin Layer on the Silicone Tube by Electrospinning Technique for Stent Application

2014 ◽  
Vol 804 ◽  
pp. 131-134
Author(s):  
Dong Geun Shin ◽  
Y.J. Lee ◽  
Y. Kim ◽  
W.T. Kwon ◽  
S.R. Kim ◽  
...  

Drug loaded polyurethane (PU) thin layer was prepared on the silicone tube by electrospinning technique. Microstructure of the PU layer was varied from nanoporous web to dense coating depending on the polymer solution concentration and the amount of drug loaded. It can be easily adjusted the coating thickness and porosity accurately and controlled the drug loading and releasing properties. However, adhesive strength between PU layer and silicone tube was very weak and easily broken away and white turbidity also another important problem. So, surface of silicone tube was atmospheric-pressure plasma (APP) treated for improving the adhesive and removing white turbidity phenomenon.

2007 ◽  
Vol 334-335 ◽  
pp. 1233-1236 ◽  
Author(s):  
Ho Wang Tong ◽  
Min Wang

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was used to fabricate micro- and nano-fibrous, non-woven mats by electrospinning for potential tissue engineering applications. The morphology and size of electrospun fibers were assessed systematically by varying the processing parameters. It was found that the diameter of the fibers produced generally increased with electrospinning voltage, needle diameter for the polymer jet and polymer solution concentration. Beaded fibers were readily produced at low PHBV concentrations, whereas the needle was blocked within a very short time during electrospinning when the PHBV concentration was too high. At the polymer concentration of 7.5 % w/v, it was shown that beadless PHBV fibers could be generated continuously by adjusting the electrospinning parameters to appropriate values. This study has clearly demonstrated that electrospinning can be an effective technique to produce PHBV micro- and nano-fibers. It has also been shown that composite fibers containing hydroxyapatite (HA) can be produced using the electrospinning technique.


2013 ◽  
Vol 13 (3) ◽  
pp. 57-66
Author(s):  
Izabella Krucińska ◽  
Maciej Boguń ◽  
Olga Chrzanowska ◽  
Michał Chrzanowski ◽  
Paulina Król

Abstract The aim of the work was to obtain nano fibrous structures from biodegradable polymer with the addition of hydroxyapatite using electrospinning technique. Research was conducted with two types of solvent: dichloromethane and 50:50 mixture of dimethyl sulfoxide and dichloromethane. As a polymer a copolymer of L-lactide and glycolide (PLGA), commercial product with trade name Resomer®LG 824, was used. The preliminary electrospinning tests enabled to match optimal polymer solution concentration of tested samples. Rheological properties of all tested polymer solutions has been determined. Influence of electrospinning conditions and the type of solvent on macroscopic structure has been investigated.


Author(s):  
Andrej Buček ◽  
Antonín Brablec ◽  
Dušan Kováčik ◽  
Pavel Sťahel ◽  
Mirko Černák

PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


2018 ◽  
Vol 677 (1) ◽  
pp. 135-142
Author(s):  
Dong Ha Kim ◽  
Choon-Sang Park ◽  
Eun Young Jung ◽  
Bhum Jae Shin ◽  
Jae Young Kim ◽  
...  

Author(s):  
Thisara Sandanuwan ◽  
Nayanathara Hendeniya ◽  
D.A.S. Amarasinghe ◽  
Dinesh Attygalle ◽  
Sampath Weragoda

Sign in / Sign up

Export Citation Format

Share Document